The Hidden Ontological Variable in Quantum Harmonic Oscillators
- URL: http://arxiv.org/abs/2407.18153v4
- Date: Mon, 28 Oct 2024 23:40:32 GMT
- Title: The Hidden Ontological Variable in Quantum Harmonic Oscillators
- Authors: Gerard t Hooft,
- Abstract summary: The standard quantum mechanical harmonic oscillator has an exact, dual relationship with a completely classical system.
One finds that, where the classical system always obeys the rule "probability in = probability out", the same probabilities are quantum probabilities in the quantum system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The standard quantum mechanical harmonic oscillator has an exact, dual relationship with a completely classical system: a classical particle running along a circle. Duality here means that there is a one-to-one relation between all observables in one model, and the observables of the other model. Thus the duality we find, appears to be in conflict with the usual assertion that classical theories can never reproduce quantum effects as observed in many quantum models. We suggest that there must be more of such relationships, but we study only this one as a prototype. It reveals how classical "hidden variables" may work. The classical states can form the basis of Hilbert space that can be adopted in describing the quantum model. Wave functions in the quantum system generate probability distributions in the classical one. One finds that, where the classical system always obeys the rule "probability in = probability out", the same probabilities are quantum probabilities in the quantum system. It is shown how the quantum x and p operators in a quantum oscillator can be given a classical meaning. It is explained how an apparent clash with quantum logic can be explained away.
Related papers
- The probabilistic world II : Quantum mechanics from classical statistics [0.0]
A simple neuromorphic computer based on neurons in an active or quiet state within a probabilistic environment can learn the unitary transformations of an entangled two-qubit system.
Our explicit constructions constitute a proof that no-go theorems for the embedding of quantum mechanics in classical statistics are circumvented.
arXiv Detail & Related papers (2024-08-09T14:02:55Z) - A computational test of quantum contextuality, and even simpler proofs of quantumness [43.25018099464869]
We show that an arbitrary contextuality game can be compiled into an operational "test of contextuality" involving a single quantum device.
Our work can be seen as using cryptography to enforce spatial separation within subsystems of a single quantum device.
arXiv Detail & Related papers (2024-05-10T19:30:23Z) - Internal causality breaking and emergence of entanglement in the quantum realm [1.1970409518725493]
We investigate the quantum dynamics of two photonic modes coupled to each other through a beam splitting.
We find that when the initial wave function of one mode is different from a wave packet obeying the minimum Heisenberg uncertainty, the causality in the time-evolution of each mode is internally broken.
arXiv Detail & Related papers (2024-03-14T13:16:00Z) - Quantum physics cannot be captured by classical linear hidden variable
theories even in the absence of entanglement [0.0]
We study the quantum trajectories of a single qubit that experiences a sequence of generalised measurements.
We conclude that quantum physics cannot be replaced by linear hidden variable theories.
arXiv Detail & Related papers (2023-10-20T21:06:15Z) - Schr\"odinger cat states of a 16-microgram mechanical oscillator [54.35850218188371]
The superposition principle is one of the most fundamental principles of quantum mechanics.
Here we demonstrate the preparation of a mechanical resonator with an effective mass of 16.2 micrograms in Schr"odinger cat states of motion.
We show control over the size and phase of the superposition and investigate the decoherence dynamics of these states.
arXiv Detail & Related papers (2022-11-01T13:29:44Z) - Why we should interpret density matrices as moment matrices: the case of
(in)distinguishable particles and the emergence of classical reality [69.62715388742298]
We introduce a formulation of quantum theory (QT) as a general probabilistic theory but expressed via quasi-expectation operators (QEOs)
We will show that QT for both distinguishable and indistinguishable particles can be formulated in this way.
We will show that finitely exchangeable probabilities for a classical dice are as weird as QT.
arXiv Detail & Related papers (2022-03-08T14:47:39Z) - Tossing Quantum Coins and Dice [0.0]
This case is an important example of a quantum procedure because it presents a typical framework employed in quantum information processing and quantum computing.
The emphasis is on the clarification of the difference between quantum and classical conditional probabilities.
arXiv Detail & Related papers (2021-03-31T11:39:56Z) - Operational Resource Theory of Imaginarity [48.7576911714538]
We show that quantum states are easier to create and manipulate if they only have real elements.
As an application, we show that imaginarity plays a crucial role for state discrimination.
arXiv Detail & Related papers (2020-07-29T14:03:38Z) - Characterization of the probabilistic models that can be embedded in
quantum theory [0.0]
We show that only classical and standard quantum theory with superselection rules can arise from a physical decoherence map.
Our results have significant consequences for some experimental tests of quantum theory, by clarifying how they could (or could not) falsify it.
arXiv Detail & Related papers (2020-04-13T18:09:39Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.