論文の概要: RIDA: A Robust Attack Framework on Incomplete Graphs
- arxiv url: http://arxiv.org/abs/2407.18170v2
- Date: Thu, 23 Jan 2025 09:12:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:56:13.412546
- Title: RIDA: A Robust Attack Framework on Incomplete Graphs
- Title(参考訳): RIDA:不完全グラフのロバスト攻撃フレームワーク
- Authors: Jianke Yu, Hanchen Wang, Chen Chen, Xiaoyang Wang, Lu Qin, Wenjie Zhang, Ying Zhang, Xijuan Liu,
- Abstract要約: 我々は,ロバスト不完全なディープアタックフレームワーク(RIDA)を紹介する。
RIDAは、不完全グラフに対する堅牢なグレーボックス中毒攻撃のための最初のアルゴリズムである。
3つの実世界のデータセット上の9つのSOTAベースラインに対する大規模なテストは、不完全性と不完全グラフ上の高い攻撃性能を扱うRIDAの優位性を示している。
- 参考スコア(独自算出の注目度): 30.845056747923255
- License:
- Abstract: Graph Neural Networks (GNNs) are vital in data science but are increasingly susceptible to adversarial attacks. To help researchers develop more robust GNN models, it's essential to focus on designing strong attack models as foundational benchmarks and guiding references. Among adversarial attacks, gray-box poisoning attacks are noteworthy due to their effectiveness and fewer constraints. These attacks exploit GNNs' need for retraining on updated data, thereby impacting their performance by perturbing these datasets. However, current research overlooks the real-world scenario of incomplete graphs.To address this gap, we introduce the Robust Incomplete Deep Attack Framework (RIDA). It is the first algorithm for robust gray-box poisoning attacks on incomplete graphs. The approach innovatively aggregates distant vertex information and ensures powerful data utilization.Extensive tests against 9 SOTA baselines on 3 real-world datasets demonstrate RIDA's superiority in handling incompleteness and high attack performance on the incomplete graph.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)はデータサイエンスにおいて不可欠だが、敵の攻撃の影響を受けやすくなっている。
研究者がより堅牢なGNNモデルを開発するのを助けるために、強力な攻撃モデルを基礎ベンチマークとして設計し、参照を導くことに重点を置くことが不可欠である。
敵対的な攻撃の中で、グレーボックス中毒は、その効果と制約の少ないために注目に値する。
これらの攻撃はGNNの更新データの再トレーニングの必要性を悪用し、これらのデータセットを摂動させることでパフォーマンスに影響を与える。
しかし、このギャップに対処するため、ロバスト不完全なディープアタックフレームワーク(RIDA)を導入する。
これは、不完全グラフに対する堅牢なグレーボックス中毒攻撃のための最初のアルゴリズムである。
提案手法は,3つの実世界のデータセットに対する9SOTAベースラインに対する拡張テストにより,不完全性や不完全性に対処する上で,RIDAが優れていることを示す。
関連論文リスト
- Talos: A More Effective and Efficient Adversarial Defense for GNN Models Based on the Global Homophily of Graphs [2.4866716181615467]
グラフニューラルネットワーク(GNN)モデルは、敵攻撃の影響を受けやすい。
そこで我々は,グラフの局所的ホモフィリーを防御としてではなく,グローバル性を高める,Talosという新しい防衛手法を提案する。
論文 参考訳(メタデータ) (2024-06-06T08:08:01Z) - Efficient Model-Stealing Attacks Against Inductive Graph Neural Networks [4.552065156611815]
グラフニューラルネットワーク(GNN)は、グラフ構造で組織された実世界のデータを処理するための強力なツールとして認識されている。
事前に定義されたグラフ構造に依存しないグラフ構造化データの処理を可能にするインダクティブGNNは、広範囲のアプリケーションにおいてますます重要になりつつある。
本稿では,誘導型GNNに対して教師なしモデルステアリング攻撃を行う新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-20T18:01:15Z) - Everything Perturbed All at Once: Enabling Differentiable Graph Attacks [61.61327182050706]
グラフニューラルネットワーク(GNN)は敵の攻撃に弱いことが示されている。
本稿では,DGA(Dariable Graph Attack)と呼ばれる新しい攻撃手法を提案し,効果的な攻撃を効率的に生成する。
最先端と比較して、DGAは6倍のトレーニング時間と11倍のGPUメモリフットプリントでほぼ同等の攻撃性能を達成する。
論文 参考訳(メタデータ) (2023-08-29T20:14:42Z) - Resisting Graph Adversarial Attack via Cooperative Homophilous
Augmentation [60.50994154879244]
最近の研究では、グラフニューラルネットワークは弱く、小さな摂動によって簡単に騙されることが示されている。
本研究では,グラフインジェクションアタック(Graph Injection Attack)という,新興だが重要な攻撃に焦点を当てる。
本稿では,グラフデータとモデルの協調的同好性増強によるGIAに対する汎用防衛フレームワークCHAGNNを提案する。
論文 参考訳(メタデータ) (2022-11-15T11:44:31Z) - Model Inversion Attacks against Graph Neural Networks [65.35955643325038]
グラフニューラルネットワーク(GNN)に対するモデル反転攻撃について検討する。
本稿では,プライベートトレーニンググラフデータを推測するためにGraphMIを提案する。
実験の結果,このような防御効果は十分ではないことが示され,プライバシー攻撃に対するより高度な防御が求められている。
論文 参考訳(メタデータ) (2022-09-16T09:13:43Z) - A Hard Label Black-box Adversarial Attack Against Graph Neural Networks [25.081630882605985]
我々は,グラフ構造の摂動によるグラフ分類のためのGNNに対する敵対的攻撃について,系統的研究を行った。
我々は、高い攻撃成功率を維持しながら、グラフ内で摂動するエッジの数を最小化する最適化問題として、我々の攻撃を定式化する。
実世界の3つのデータセットに対する実験結果から,クエリや摂動を少なくして,グラフ分類のための代表的GNNを効果的に攻撃できることが示された。
論文 参考訳(メタデータ) (2021-08-21T14:01:34Z) - Adversarial Attack on Large Scale Graph [58.741365277995044]
近年の研究では、グラフニューラルネットワーク(GNN)は堅牢性の欠如により摂動に弱いことが示されている。
現在、GNN攻撃に関するほとんどの研究は、主に攻撃を誘導し、優れたパフォーマンスを達成するために勾配情報を使用している。
主な理由は、攻撃にグラフ全体を使わなければならないため、データスケールが大きくなるにつれて、時間と空間の複雑さが増大するからです。
本稿では,グラフデータに対する敵攻撃の影響を測定するために,DAC(Degree Assortativity Change)という実用的な指標を提案する。
論文 参考訳(メタデータ) (2020-09-08T02:17:55Z) - Graph Backdoor [53.70971502299977]
GTAはグラフニューラルネットワーク(GNN)に対する最初のバックドア攻撃である。
GTAは、トポロジカル構造と記述的特徴の両方を含む特定の部分グラフとしてトリガーを定義する。
トランスダクティブ(ノード分類など)とインダクティブ(グラフ分類など)の両方のタスクに対してインスタンス化することができる。
論文 参考訳(メタデータ) (2020-06-21T19:45:30Z) - Graph Structure Learning for Robust Graph Neural Networks [63.04935468644495]
グラフニューラルネットワーク(GNN)は、グラフの表現学習において強力なツールである。
近年の研究では、GNNは敵攻撃と呼ばれる、慎重に構築された摂動に弱いことが示されている。
本稿では,構造グラフと頑健なグラフニューラルネットワークモデルを共同で学習できる汎用フレームワークであるPro-GNNを提案する。
論文 参考訳(メタデータ) (2020-05-20T17:07:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。