論文の概要: BIV-Priv-Seg: Locating Private Content in Images Taken by People With Visual Impairments
- arxiv url: http://arxiv.org/abs/2407.18243v1
- Date: Thu, 25 Jul 2024 17:57:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 13:09:36.654446
- Title: BIV-Priv-Seg: Locating Private Content in Images Taken by People With Visual Impairments
- Title(参考訳): BIV-Priv-Seg:視覚障害者が撮影した画像中のプライベートコンテンツ
- Authors: Yu-Yun Tseng, Tanusree Sharma, Lotus Zhang, Abigale Stangl, Leah Findlater, Yang Wang, Danna Gurari Yu-Yun Tseng, Tanusree Sharma, Lotus Zhang, Abigale Stangl, Leah Findlater, Yang Wang, Danna Gurari,
- Abstract要約: BIV-Priv-Segは、プライベートコンテンツを表示する視覚障害を持つ人々から生まれた最初のデータセットである。
16のプライベートオブジェクトカテゴリ用のセグメンテーションアノテーションを備えた1,028のイメージが含まれている。
我々は、データセット内のプライベートコンテンツを特定するために、最新のモデルの性能を評価する。
- 参考スコア(独自算出の注目度): 32.5752223141093
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Individuals who are blind or have low vision (BLV) are at a heightened risk of sharing private information if they share photographs they have taken. To facilitate developing technologies that can help preserve privacy, we introduce BIV-Priv-Seg, the first localization dataset originating from people with visual impairments that shows private content. It contains 1,028 images with segmentation annotations for 16 private object categories. We first characterize BIV-Priv-Seg and then evaluate modern models' performance for locating private content in the dataset. We find modern models struggle most with locating private objects that are not salient, small, and lack text as well as recognizing when private content is absent from an image. We facilitate future extensions by sharing our new dataset with the evaluation server at https://vizwiz.org/tasks-and-datasets/object-localization.
- Abstract(参考訳): 盲目または低視力(BLV)を持つ個人は、撮影した写真を共有する場合、プライベート情報を共有するリスクが高くなる。
BIV-Priv-Segは、プライベートコンテンツを表示する視覚障害を持つ人々から生まれた、最初のローカライゼーションデータセットである。
16のプライベートオブジェクトカテゴリ用のセグメンテーションアノテーションを備えた1,028のイメージが含まれている。
まず、BIV-Priv-Segを特徴付けるとともに、データセット内のプライベートコンテンツを特定するためのモダンモデルの性能を評価する。
現代モデルは、画像からプライベートコンテンツが欠落していることを認識できるだけでなく、健全で小さく、テキストが欠けているプライベートオブジェクトの発見に最も苦労している。
我々は、新しいデータセットをhttps://vizwiz.org/tasks-and-datasets/object-localizationで評価サーバと共有することで、将来の拡張を容易にする。
関連論文リスト
- Explaining models relating objects and privacy [33.78605193864911]
画像から抽出したオブジェクトを用いて、なぜ画像がプライベートであると予測されるのかを判断するプライバシーモデルを評価する。
プライバシ決定の主要な要因は、個人カテゴリの存在と、その濃度であることを示す。
論文 参考訳(メタデータ) (2024-05-02T18:06:48Z) - Private Attribute Inference from Images with Vision-Language Models [2.9373912230684565]
視覚言語モデル(VLM)は、画像とテキストの両方を理解することができる。
我々は7つの最先端のVLMを評価し、最大77.6%の精度で様々な個人属性を推測できることを発見した。
モデルの一般的な能力で精度がスケールすることが観察され、将来のモデルはより強い推論の敵として誤用される可能性が示唆された。
論文 参考訳(メタデータ) (2024-04-16T14:42:49Z) - LDP-Feat: Image Features with Local Differential Privacy [10.306943706927006]
埋め込みから元の画像の特徴を復元できることを示すために,2つの新しい反転攻撃を提案する。
本稿では,画像特徴を局所的な差分プライバシーによって民営化する最初の手法を提案する。
論文 参考訳(メタデータ) (2023-08-22T06:28:55Z) - ConfounderGAN: Protecting Image Data Privacy with Causal Confounder [85.6757153033139]
本稿では,GAN(Generative Adversarial Network)のConfounderGANを提案する。
実験は、3つの自然なオブジェクトデータセットと3つの医療データセットからなる6つの画像分類データセットで実施される。
論文 参考訳(メタデータ) (2022-12-04T08:49:14Z) - Mixed Differential Privacy in Computer Vision [133.68363478737058]
AdaMixは、プライベートとパブリックの両方の画像データを使用して、ディープニューラルネットワーク分類器をトレーニングするための適応型微分プライベートアルゴリズムである。
プライベートデータを無視する数ショットあるいはゼロショットの学習ベースラインは、大規模なプライベートデータセットの微調整よりも優れています。
論文 参考訳(メタデータ) (2022-03-22T06:15:43Z) - Personalized Image Semantic Segmentation [58.980245748434]
ラベルのないパーソナライズされた画像に対して、データのパーソナライズされた特徴を調査することにより、より正確なセグメンテーション結果を生成する。
画像のセグメント化時に画像間コンテキストを組み込んだベースライン手法を提案する。
コードとPSSデータセットは公開されます。
論文 参考訳(メタデータ) (2021-07-24T04:03:11Z) - Privacy-Preserving Image Features via Adversarial Affine Subspace
Embeddings [72.68801373979943]
多くのコンピュータビジョンシステムでは、ユーザーは画像処理とストレージのためにイメージ機能をクラウドにアップロードする必要がある。
本稿では,新しいプライバシー保護機能表現を提案する。
従来の特徴と比較すると,敵が個人情報を回収するのは極めて困難である。
論文 参考訳(メタデータ) (2020-06-11T17:29:48Z) - TIPRDC: Task-Independent Privacy-Respecting Data Crowdsourcing Framework
for Deep Learning with Anonymized Intermediate Representations [49.20701800683092]
本稿では,匿名化中間表現を用いたタスク非依存型プライバシ参照データクラウドソーシングフレームワークTIPRDCを提案する。
このフレームワークの目的は、中間表現からプライバシー情報を隠蔽できる機能抽出器を学習することであり、データコレクターの生データに埋め込まれた元の情報を最大限に保持し、未知の学習タスクを達成することである。
論文 参考訳(メタデータ) (2020-05-23T06:21:26Z) - InfoScrub: Towards Attribute Privacy by Targeted Obfuscation [77.49428268918703]
視覚データに流出した個人情報を個人が制限できる技術について検討する。
我々はこの問題を新しい画像難読化フレームワークで解決する。
提案手法では,元の入力画像に忠実な難読化画像を生成するとともに,非難読化画像に対して6.2$times$(または0.85bits)の不確実性を増大させる。
論文 参考訳(メタデータ) (2020-05-20T19:48:04Z) - PrivEdge: From Local to Distributed Private Training and Prediction [43.02041269239928]
PrivEdgeはプライバシ保護機械学習(ML)のためのテクニック
PrivEdgeは、トレーニングのためにデータを提供するユーザのプライバシと、予測サービスを使用するユーザのプライバシを保護する。
PrivEdgeは、プライバシの保存や、プライベートイメージと非プライベートイメージの区別において、高い精度とリコールを持っていることを示す。
論文 参考訳(メタデータ) (2020-04-12T09:26:12Z) - Privacy-Preserving Image Classification in the Local Setting [17.375582978294105]
ローカル微分プライバシ(LDP)は、データ所有者がランダムにインプットを摂動させ、リリース前にデータの妥当な削除を可能にする、有望なソリューションを提供する。
本稿では、データ所有者が画像を保持し、不信なデータ利用者が機械学習モデルにこれらの画像を入力として適合させたいという、双方向のイメージ分類問題について考察する。
本稿では,拡張性のある領域サイズで画像表現を生成する,教師付き画像特徴抽出器 DCAConv を提案する。
論文 参考訳(メタデータ) (2020-02-09T01:25:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。