論文の概要: Online Social Network Data-Driven Early Detection on Short-Form Video Addiction
- arxiv url: http://arxiv.org/abs/2407.18277v1
- Date: Wed, 24 Jul 2024 02:47:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-29 15:18:53.298404
- Title: Online Social Network Data-Driven Early Detection on Short-Form Video Addiction
- Title(参考訳): 短時間のビデオ付加によるオンラインソーシャルネットワークデータ駆動早期検出
- Authors: Fang-Yu Kuo,
- Abstract要約: ショート・フォーム・ビデオ(SFV)は近年、世界的なエンターテイメントの形式となり、主要なソーシャルメディアプラットフォームに登場した。
SFVA(Short-form Video Addiction)は、実生活における心理的サポートの欠如、家族や学術的なプレッシャー、社会不安などの他の問題と関連付けられている。
本研究では,ソーシャルネットワークの挙動に基づく短いビデオ中毒データセットの構築と,SFVAの早期検出フレームワークの設計を目的とする。
- 参考スコア(独自算出の注目度): 0.5532260775975897
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Short-form video (SFV) has become a globally popular form of entertainment in recent years, appearing on major social media platforms. However, current research indicate that short video addiction can lead to numerous negative effects on both physical and psychological health, such as decreased attention span and reduced motivation to learn. Additionally, Short-form Video Addiction (SFVA) has been linked to other issues such as a lack of psychological support in real life, family or academic pressure, and social anxiety. Currently, the detection of SFVA typically occurs only after users experience negative consequences. Therefore, we aim to construct a short video addiction dataset based on social network behavior and design an early detection framework for SFVA. Previous mental health detection research on online social media has mostly focused on detecting depression and suicidal tendency. In this study, we propose the first early detection framework for SFVA EarlySD. We first introduce large language models (LLMs) to address the common issues of sparsity and missing data in graph datasets. Meanwhile, we categorize social network behavior data into different modalities and design a heterogeneous social network structure as the primary basis for detecting SFVA. We conduct a series of quantitative analysis on short video addicts using our self-constructed dataset, and perform extensive experiments to validate the effectiveness of our method EarlySD, using social data and heterogeneous social graphs in the detection of short video addiction.
- Abstract(参考訳): ショート・フォーム・ビデオ(SFV)は近年、世界的なエンターテイメントの形式となり、主要なソーシャルメディアプラットフォームに登場した。
しかし、近年の研究では、短いビデオ中毒は、注意幅の減少や学習意欲の低下など、身体的および心理的健康の両方に多くのネガティブな影響をもたらす可能性が示唆されている。
さらに、SFVA(Short-form Video Addiction)は、現実生活における心理的サポートの欠如、家族や学業のプレッシャー、社会不安といった他の問題と関連付けられている。
現在、SFVAの検出は通常、ユーザがネガティブな結果を経験した後にのみ発生する。
そこで本稿では,ソーシャルネットワークの挙動に基づく短いビデオ中毒データセットの構築と,SFVAの早期検出フレームワークの設計を目的とする。
オンラインソーシャルメディアにおける以前のメンタルヘルス検出研究は、うつ病や自殺傾向の発見に主に焦点を絞っている。
本研究では,SFVA EarlySDの最初の早期検出フレームワークを提案する。
まず,グラフデータセットにおける疎性や欠落するデータの共通問題に対処するために,大規模言語モデル(LLM)を導入する。
一方、ソーシャルネットワークの行動データを異なるモダリティに分類し、不均一なソーシャルネットワーク構造をSFVA検出の基盤として設計する。
自己構築したデータセットを用いて、短いビデオ中毒者の定量的分析を行い、短いビデオ中毒の検出に社会データと異種ソーシャルグラフを用いて、我々の方法であるEarlySDの有効性を検証するための広範な実験を行った。
関連論文リスト
- Reddit-Impacts: A Named Entity Recognition Dataset for Analyzing Clinical and Social Effects of Substance Use Derived from Social Media [6.138126219622993]
物質利用障害(SUD)は、データ駆動研究を通じて、問題とそのトレンドの理解を深める必要がある、世界的な関心事である。
ソーシャルメディアは、SUDに関するユニークな重要な情報源であり、特にそのような情報源のデータは、生きた経験を持つ人々によってしばしば生成されるためである。
本稿では,処方と違法なオピオイド,およびオピオイド使用障害の薬物に関する議論を専門とするサブレディットからキュレートされた,難解な名前付きエンティティ認識(NER)データセットであるReddit-Impactsを紹介する。
このデータセットは、研究の少ないが重要な、物質利用の側面に特に焦点を絞っている。
論文 参考訳(メタデータ) (2024-05-09T23:43:57Z) - Graph Neural Networks for Antisocial Behavior Detection on Twitter [0.0]
反社会的行動のソーシャルメディアの復活は、ステレオタイプ的信念や個人や社会グループに対する憎悪的なコメントに下向きのスパイラルをもたらした。
大量のグラフ構造化データに使用されるグラフニューラルネットワークの進歩は、ソーシャルメディアプラットフォームにおけるコミュニケーションのメディア化の将来への期待を高めている。
グラフ畳み込みデータに基づくアプローチを用いて、異種データ間の依存関係をよりよく把握した。
論文 参考訳(メタデータ) (2023-12-28T00:25:12Z) - Towards Debiasing Frame Length Bias in Text-Video Retrieval via Causal
Intervention [72.12974259966592]
トリミングビデオクリップのトレーニングセットとテストセットのフレーム長差による時間偏差について,一意かつ体系的に検討した。
Epic-Kitchens-100, YouCook2, MSR-VTTデータセットについて, 因果脱バイアス法を提案し, 広範な実験およびアブレーション研究を行った。
論文 参考訳(メタデータ) (2023-09-17T15:58:27Z) - What Symptoms and How Long? An Interpretable AI Approach for Depression
Detection in Social Media [0.5156484100374058]
うつ病は最も一般的で深刻な精神疾患であり、重大な財政的・社会的影響をもたらす。
本研究は、ソーシャルメディアにおける抑うつ検出のための新しい解釈可能な深層学習モデルを用いて、IS文献に寄与する。
論文 参考訳(メタデータ) (2023-05-18T20:15:04Z) - Harnessing the Power of Text-image Contrastive Models for Automatic
Detection of Online Misinformation [50.46219766161111]
誤情報識別の領域における構成的学習を探求する自己学習モデルを構築した。
本モデルでは、トレーニングデータが不十分な場合、非マッチング画像-テキストペア検出の優れた性能を示す。
論文 参考訳(メタデータ) (2023-04-19T02:53:59Z) - Evidential Temporal-aware Graph-based Social Event Detection via
Dempster-Shafer Theory [76.4580340399321]
ETGNN(Evidential Temporal-aware Graph Neural Network)を提案する。
ノードがテキストであり、エッジがそれぞれ複数の共有要素によって決定されるビュー固有グラフを構築する。
ビュー固有の不確実性を考慮すると、すべてのビューの表現は、明らかなディープラーニング(EDL)ニューラルネットワークを介してマス関数に変換される。
論文 参考訳(メタデータ) (2022-05-24T16:22:40Z) - Two-Faced Humans on Twitter and Facebook: Harvesting Social Multimedia
for Human Personality Profiling [74.83957286553924]
我々は、"PERS"と呼ばれる新しい多視点融合フレームワークを適用して、マイアーズ・ブリッグス・パーソナリティ・タイプインジケータを推定する。
実験の結果,多視点データからパーソナリティ・プロファイリングを学習する能力は,多様なソーシャル・マルチメディア・ソースからやってくるデータを効率的に活用できることが示唆された。
論文 参考訳(メタデータ) (2021-06-20T10:48:49Z) - DepressionNet: A Novel Summarization Boosted Deep Framework for
Depression Detection on Social Media [12.820775223409857]
Twitterは、ユーザーが生成したコンテンツを共有できる人気のオンラインソーシャルメディアプラットフォームである。
応用の1つは、うつ病などの精神疾患を自動的に発見することである。
オンラインソーシャルメディア上で、抑うつされたユーザーを自動的に検出する以前の研究は、ユーザー行動と言語パターンに大きく依存している。
論文 参考訳(メタデータ) (2021-05-23T08:05:53Z) - Social Behavior and Mental Health: A Snapshot Survey under COVID-19
Pandemic [6.5721468981020665]
新型コロナウイルスのパンデミックは、私たちの生活、研究、社会化、再現方法を変えました。
オンラインソーシャルメディア分析を利用してユーザーの精神状態を検出し評価する研究が増えている。
論文 参考訳(メタデータ) (2021-05-17T21:08:03Z) - Leveraging Multi-Source Weak Social Supervision for Early Detection of
Fake News [67.53424807783414]
ソーシャルメディアは、人々が前例のない速度でオンライン活動に参加することを可能にする。
この制限のないアクセスは、誤情報や偽ニュースの拡散を悪化させ、その緩和のために早期に検出されない限り混乱と混乱を引き起こす可能性がある。
ソーシャルエンゲージメントからの弱い信号とともに、限られた量のクリーンデータを活用して、メタラーニングフレームワークでディープニューラルネットワークをトレーニングし、さまざまな弱いインスタンスの品質を推定します。
実世界のデータセットの実験では、提案されたフレームワークは、予測時にユーザーエンゲージメントを使わずに、フェイクニュースを早期に検出するための最先端のベースラインを上回っている。
論文 参考訳(メタデータ) (2020-04-03T18:26:33Z) - I Know Where You Are Coming From: On the Impact of Social Media Sources
on AI Model Performance [79.05613148641018]
我々は、異なるソーシャルネットワークのマルチモーダルデータから学習する際、異なる機械学習モデルの性能について検討する。
最初の実験結果から,ソーシャルネットワークの選択がパフォーマンスに影響を及ぼすことが明らかとなった。
論文 参考訳(メタデータ) (2020-02-05T11:10:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。