Simulation of Neural Responses to Classical Music Using Organoid Intelligence Methods
- URL: http://arxiv.org/abs/2407.18413v1
- Date: Thu, 25 Jul 2024 22:11:30 GMT
- Title: Simulation of Neural Responses to Classical Music Using Organoid Intelligence Methods
- Authors: Daniel Szelogowski,
- Abstract summary: Organoid intelligence and deep learning models show promise for simulating and analyzing neural responses to classical music.
We present the PyOrganoid library, an innovative tool that facilitates the simulation of organoid learning models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Music is a complex auditory stimulus capable of eliciting significant changes in brain activity, influencing cognitive processes such as memory, attention, and emotional regulation. However, the underlying mechanisms of music-induced cognitive processes remain largely unknown. Organoid intelligence and deep learning models show promise for simulating and analyzing these neural responses to classical music, an area significantly unexplored in computational neuroscience. Hence, we present the PyOrganoid library, an innovative tool that facilitates the simulation of organoid learning models, integrating sophisticated machine learning techniques with biologically inspired organoid simulations. Our study features the development of the Pianoid model, a "deep organoid learning" model that utilizes a Bidirectional LSTM network to predict EEG responses based on audio features from classical music recordings. This model demonstrates the feasibility of using computational methods to replicate complex neural processes, providing valuable insights into music perception and cognition. Likewise, our findings emphasize the utility of synthetic models in neuroscience research and highlight the PyOrganoid library's potential as a versatile tool for advancing studies in neuroscience and artificial intelligence.
Related papers
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
The human brain has long inspired the pursuit of artificial intelligence (AI)
Recent neuroimaging studies provide compelling evidence of alignment between the computational representation of artificial neural networks (ANNs) and the neural responses of the human brain to stimuli.
In this study, we bridge this gap by directly coupling sub-groups of artificial neurons with functional brain networks (FBNs)
This framework links the AN sub-groups to FBNs, enabling the delineation of brain-like functional organization within large language models (LLMs)
arXiv Detail & Related papers (2024-10-25T13:15:17Z) - Neural Dynamics Model of Visual Decision-Making: Learning from Human Experts [28.340344705437758]
We implement a comprehensive visual decision-making model that spans from visual input to behavioral output.
Our model aligns closely with human behavior and reflects neural activities in primates.
A neuroimaging-informed fine-tuning approach was introduced and applied to the model, leading to performance improvements.
arXiv Detail & Related papers (2024-09-04T02:38:52Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - R&B -- Rhythm and Brain: Cross-subject Decoding of Music from Human Brain Activity [0.12289361708127873]
Music is a universal phenomenon that profoundly influences human experiences across cultures.
This study investigates whether music can be decoded from human brain activity measured with functional MRI (fMRI) during its perception.
arXiv Detail & Related papers (2024-06-21T17:11:45Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
We investigate the potential of Intel's fifth generation neuromorphic chip - Loihi'
Loihi is based on the novel idea of Spiking Neural Networks (SNNs) emulating the neurons in the brain.
We find that Loihi replicates classical simulations very efficiently and scales notably well in terms of both time and energy performance as the networks get larger.
arXiv Detail & Related papers (2021-09-22T16:52:51Z) - A brain basis of dynamical intelligence for AI and computational
neuroscience [0.0]
More brain-like capacities may demand new theories, models, and methods for designing artificial learning systems.
This article was inspired by our symposium on dynamical neuroscience and machine learning at the 6th Annual US/NIH BRAIN Initiative Investigators Meeting.
arXiv Detail & Related papers (2021-05-15T19:49:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.