Adversarially Robust Decision Transformer
- URL: http://arxiv.org/abs/2407.18414v2
- Date: Fri, 1 Nov 2024 17:47:03 GMT
- Title: Adversarially Robust Decision Transformer
- Authors: Xiaohang Tang, Afonso Marques, Parameswaran Kamalaruban, Ilija Bogunovic,
- Abstract summary: We propose a worst-case-aware RvS algorithm, the Adversarially Robust Decision Transformer (ARDT)
ARDT learns and conditions the policy on in-sample minimax returns-to-go.
In large-scale sequential games and continuous adversarial RL environments, ARDT demonstrates significantly superior robustness to powerful test-time adversaries.
- Score: 17.49328076347261
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Decision Transformer (DT), as one of the representative Reinforcement Learning via Supervised Learning (RvS) methods, has achieved strong performance in offline learning tasks by leveraging the powerful Transformer architecture for sequential decision-making. However, in adversarial environments, these methods can be non-robust, since the return is dependent on the strategies of both the decision-maker and adversary. Training a probabilistic model conditioned on observed return to predict action can fail to generalize, as the trajectories that achieve a return in the dataset might have done so due to a suboptimal behavior adversary. To address this, we propose a worst-case-aware RvS algorithm, the Adversarially Robust Decision Transformer (ARDT), which learns and conditions the policy on in-sample minimax returns-to-go. ARDT aligns the target return with the worst-case return learned through minimax expectile regression, thereby enhancing robustness against powerful test-time adversaries. In experiments conducted on sequential games with full data coverage, ARDT can generate a maximin (Nash Equilibrium) strategy, the solution with the largest adversarial robustness. In large-scale sequential games and continuous adversarial RL environments with partial data coverage, ARDT demonstrates significantly superior robustness to powerful test-time adversaries and attains higher worst-case returns compared to contemporary DT methods.
Related papers
- Q-value Regularized Decision ConvFormer for Offline Reinforcement Learning [5.398202201395825]
Decision Transformer (DT) has demonstrated exceptional capabilities in offline reinforcement learning.
Decision ConvFormer (DC) is easier to understand in the context of modeling RL trajectories within a Markov Decision Process.
We propose the Q-value Regularized Decision ConvFormer (QDC), which combines the understanding of RL trajectories by DC and incorporates a term that maximizes action values.
arXiv Detail & Related papers (2024-09-12T14:10:22Z) - Q-value Regularized Transformer for Offline Reinforcement Learning [70.13643741130899]
We propose a Q-value regularized Transformer (QT) to enhance the state-of-the-art in offline reinforcement learning (RL)
QT learns an action-value function and integrates a term maximizing action-values into the training loss of Conditional Sequence Modeling (CSM)
Empirical evaluations on D4RL benchmark datasets demonstrate the superiority of QT over traditional DP and CSM methods.
arXiv Detail & Related papers (2024-05-27T12:12:39Z) - Critic-Guided Decision Transformer for Offline Reinforcement Learning [28.211835303617118]
Critic-Guided Decision Transformer (CGDT)
Uses predictability of long-term returns from value-based methods with the trajectory modeling capability of the Decision Transformer.
Builds upon these insights, we propose a novel approach, which combines the predictability of long-term returns from value-based methods with the trajectory modeling capability of the Decision Transformer.
arXiv Detail & Related papers (2023-12-21T10:29:17Z) - Non-ergodicity in reinforcement learning: robustness via ergodicity transformations [8.44491527275706]
Application areas for reinforcement learning (RL) include autonomous driving, precision agriculture, and finance.
We argue that a fundamental issue contributing to this lack of robustness lies in the focus on the expected value of the return.
We propose an algorithm for learning ergodicity from data and demonstrate its effectiveness in an instructive, non-ergodic environment.
arXiv Detail & Related papers (2023-10-17T15:13:33Z) - Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
We propose a novel doubly-robust instance reweighted adversarial framework.
Our importance weights are obtained by optimizing the KL-divergence regularized loss function.
Our proposed approach outperforms related state-of-the-art baseline methods in terms of average robust performance.
arXiv Detail & Related papers (2023-08-01T06:16:18Z) - Supervised Pretraining Can Learn In-Context Reinforcement Learning [96.62869749926415]
In this paper, we study the in-context learning capabilities of transformers in decision-making problems.
We introduce and study Decision-Pretrained Transformer (DPT), a supervised pretraining method where the transformer predicts an optimal action.
We find that the pretrained transformer can be used to solve a range of RL problems in-context, exhibiting both exploration online and conservatism offline.
arXiv Detail & Related papers (2023-06-26T17:58:50Z) - A Bayesian Robust Regression Method for Corrupted Data Reconstruction [5.298637115178182]
We develop an effective robust regression method that can resist adaptive adversarial attacks.
First, we propose the novel TRIP (hard Thresholding approach to Robust regression with sImple Prior) algorithm.
We then use the idea of Bayesian reweighting to construct the more robust BRHT (robust Bayesian Reweighting regression via Hard Thresholding) algorithm.
arXiv Detail & Related papers (2022-12-24T17:25:53Z) - You Can't Count on Luck: Why Decision Transformers Fail in Stochastic
Environments [31.117949189062895]
Decision Transformer that reduce reinforcement learning to a prediction task and solve it via supervised learning (RvS) have become popular due to their simplicity, robustness to hypers, and strong overall performance on offline tasks.
However, simply conditioning a model on a desired return and taking the predicted action can fail dramatically in environments that result in a return due to luck.
In this work, we describe the limitations of RvS approaches in environments and propose a solution.
Rather than simply conditioning on the return of a single trajectory as is standard practice, our proposed method, ESPER, learns to cluster trajectories and conditions
arXiv Detail & Related papers (2022-05-31T17:15:44Z) - Probabilistically Robust Learning: Balancing Average- and Worst-case
Performance [105.87195436925722]
We propose a framework called robustness probabilistic that bridges the gap between the accurate, yet brittle average case and the robust, yet conservative worst case.
From a theoretical point of view, this framework overcomes the trade-offs between the performance and the sample-complexity of worst-case and average-case learning.
arXiv Detail & Related papers (2022-02-02T17:01:38Z) - Robust Reinforcement Learning using Adversarial Populations [118.73193330231163]
Reinforcement Learning (RL) is an effective tool for controller design but can struggle with issues of robustness.
We show that using a single adversary does not consistently yield robustness to dynamics variations under standard parametrizations of the adversary.
We propose a population-based augmentation to the Robust RL formulation in which we randomly initialize a population of adversaries and sample from the population uniformly during training.
arXiv Detail & Related papers (2020-08-04T20:57:32Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
Adversarial training (AT) is among the most effective techniques to improve model robustness by augmenting training data with adversarial examples.
Most existing AT methods adopt a specific attack to craft adversarial examples, leading to the unreliable robustness against other unseen attacks.
In this paper, we introduce adversarial distributional training (ADT), a novel framework for learning robust models.
arXiv Detail & Related papers (2020-02-14T12:36:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.