Model-driven Heart Rate Estimation and Heart Murmur Detection based on Phonocardiogram
- URL: http://arxiv.org/abs/2407.18424v1
- Date: Thu, 25 Jul 2024 22:56:21 GMT
- Title: Model-driven Heart Rate Estimation and Heart Murmur Detection based on Phonocardiogram
- Authors: Jingping Nie, Ran Liu, Behrooz Mahasseni, Erdrin Azemi, Vikramjit Mitra,
- Abstract summary: This study utilizes a publicly available phonocardiogram (PCG) dataset to estimate heart rate.
We extend the best-performing model to a multi-task learning framework for simultaneous heart rate estimation and murmur detection.
- Score: 4.5546756241897235
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Acoustic signals are crucial for health monitoring, particularly heart sounds which provide essential data like heart rate and detect cardiac anomalies such as murmurs. This study utilizes a publicly available phonocardiogram (PCG) dataset to estimate heart rate using model-driven methods and extends the best-performing model to a multi-task learning (MTL) framework for simultaneous heart rate estimation and murmur detection. Heart rate estimates are derived using a sliding window technique on heart sound snippets, analyzed with a combination of acoustic features (Mel spectrogram, cepstral coefficients, power spectral density, root mean square energy). Our findings indicate that a 2D convolutional neural network (\textbf{\texttt{2dCNN}}) is most effective for heart rate estimation, achieving a mean absolute error (MAE) of 1.312 bpm. We systematically investigate the impact of different feature combinations and find that utilizing all four features yields the best results. The MTL model (\textbf{\texttt{2dCNN-MTL}}) achieves accuracy over 95% in murmur detection, surpassing existing models, while maintaining an MAE of 1.636 bpm in heart rate estimation, satisfying the requirements stated by Association for the Advancement of Medical Instrumentation (AAMI).
Related papers
- SQUWA: Signal Quality Aware DNN Architecture for Enhanced Accuracy in Atrial Fibrillation Detection from Noisy PPG Signals [37.788535094404644]
Atrial fibrillation (AF) significantly increases the risk of stroke, heart disease, and mortality.
Photoplethysmography ( PPG) signals are susceptible to corruption from motion artifacts and other factors often encountered in ambulatory settings.
We propose a novel deep learning model, designed to learn how to retain accurate predictions from partially corrupted PPG.
arXiv Detail & Related papers (2024-04-15T01:07:08Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
noisy and poor-quality recordings are a major issue for signals collected using mobile health systems.
Recent studies have explored the imputation of missing values in ECG with probabilistic time-series models.
We present a template-guided denoising diffusion probabilistic model (DDPM), PulseDiff, which is conditioned on an informative prior for a range of health conditions.
arXiv Detail & Related papers (2023-10-24T11:34:15Z) - Digital twinning of cardiac electrophysiology models from the surface
ECG: a geodesic backpropagation approach [39.36827689390718]
We introduce a novel method, Geodesic-BP, to solve the inverse eikonal problem.
We show that Geodesic-BP can reconstruct a simulated cardiac activation with high accuracy in a synthetic test case.
Given the future shift towards personalized medicine, Geodesic-BP has the potential to help in future functionalizations of cardiac models.
arXiv Detail & Related papers (2023-08-16T14:57:12Z) - A lightweight hybrid CNN-LSTM model for ECG-based arrhythmia detection [0.0]
This paper introduces a light deep learning approach for high accuracy detection of 8 different cardiac arrhythmias and normal rhythm.
A trained model for arrhythmia classification using diverse ECG signals were successfully developed and tested.
arXiv Detail & Related papers (2022-08-29T05:01:04Z) - Three-dimensional micro-structurally informed in silico myocardium --
towards virtual imaging trials in cardiac diffusion weighted MRI [58.484353709077034]
We propose a novel method to generate a realistic numerical phantom of myocardial microstructure.
In-silico tissue models enable evaluating quantitative models of magnetic resonance imaging.
arXiv Detail & Related papers (2022-08-22T22:01:44Z) - Classification of ECG based on Hybrid Features using CNNs for Wearable
Applications [2.0999222360659604]
We demonstrate improved performance for ECG classification using hybrid features and three different models.
An RR interval features based model proposed in this work achieved an accuracy of 98.98%, which is an improvement over the baseline model.
Another model combining the frequency features and the RR interval features was developed, which achieved a high accuracy of 99% with good sustained performance in noisy environments.
arXiv Detail & Related papers (2022-06-14T12:14:40Z) - Machine Learning-based Efficient Ventricular Tachycardia Detection Model
of ECG Signal [0.0]
In primary diagnosis and analysis of heart defects, an ECG signal plays a significant role.
This paper presents a model for the prediction of ventricular tachycardia arrhythmia using noise filtering, a unique set of ECG features, and a machine learning-based classifier model.
arXiv Detail & Related papers (2021-12-24T05:56:09Z) - Estimation of atrial fibrillation from lead-I ECGs: Comparison with
cardiologists and machine learning model (CurAlive), a clinical validation
study [0.0]
This study presents a method to detect atrial fibrillation with lead-I ECGs using artificial intelligence.
The aim of the study is to compare the accuracy of the diagnoses estimated by cardiologists and artificial intelligence over lead-I ECGs.
arXiv Detail & Related papers (2021-04-15T12:50:16Z) - MSED: a multi-modal sleep event detection model for clinical sleep
analysis [62.997667081978825]
We designed a single deep neural network architecture to jointly detect sleep events in a polysomnogram.
The performance of the model was quantified by F1, precision, and recall scores, and by correlating index values to clinical values.
arXiv Detail & Related papers (2021-01-07T13:08:44Z) - Spatio-temporal Multi-task Learning for Cardiac MRI Left Ventricle
Quantification [6.887389908965403]
We propose a learning-temporal multi-task approach to obtain a complete set of measurements of cardiac left ventricle (LV) morphology.
We first segment LVs using an encoder-decoder network and then introduce a framework to regress 11 LV indices and classify the cardiac phase.
The proposed model is based on the 3D-temporal convolutions, which extract spatial and features from MR images.
arXiv Detail & Related papers (2020-12-24T17:48:35Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.