論文の概要: Impact of Recurrent Neural Networks and Deep Learning Frameworks on Real-time Lightweight Time Series Anomaly Detection
- arxiv url: http://arxiv.org/abs/2407.18439v1
- Date: Fri, 26 Jul 2024 00:38:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-29 14:49:32.057161
- Title: Impact of Recurrent Neural Networks and Deep Learning Frameworks on Real-time Lightweight Time Series Anomaly Detection
- Title(参考訳): リアルタイム時系列異常検出における繰り返しニューラルネットワークとディープラーニングフレームワークの影響
- Authors: Ming-Chang Lee, Jia-Chun Lin, Sokratis Katsikas,
- Abstract要約: 様々なディープラーニングフレームワークで利用可能な異なるタイプのRNNが、これらの異常検出手法の性能にどのように影響するかは不明だ。
我々は、いくつかの最先端手法をレビューし、よく知られたRNN変種を用いた代表的異常検出手法を実装した。
次に、実世界のオープンソース時系列データセットにまたがる各実装のパフォーマンスを分析するために、包括的な評価を行う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-time lightweight time series anomaly detection has become increasingly crucial in cybersecurity and many other domains. Its ability to adapt to unforeseen pattern changes and swiftly identify anomalies enables prompt responses and critical decision-making. While several such anomaly detection approaches have been introduced in recent years, they primarily utilize a single type of recurrent neural networks (RNNs) and have been implemented in only one deep learning framework. It is unclear how the use of different types of RNNs available in various deep learning frameworks affects the performance of these anomaly detection approaches due to the absence of comprehensive evaluations. Arbitrarily choosing a RNN variant and a deep learning framework to implement an anomaly detection approach may not reflect its true performance and could potentially mislead users into favoring one approach over another. In this paper, we aim to study the influence of various types of RNNs available in popular deep learning frameworks on real-time lightweight time series anomaly detection. We reviewed several state-of-the-art approaches and implemented a representative anomaly detection approach using well-known RNN variants supported by three widely recognized deep learning frameworks. A comprehensive evaluation is then conducted to analyze the performance of each implementation across real-world, open-source time series datasets. The evaluation results provide valuable guidance for selecting the appropriate RNN variant and deep learning framework for real-time, lightweight time series anomaly detection.
- Abstract(参考訳): リアルタイムの軽量時系列異常検出は、サイバーセキュリティやその他の多くのドメインにおいてますます重要になっている。
予期せぬパターンの変化に適応し、異常を迅速に識別する能力は、迅速な応答と重要な意思決定を可能にする。
近年、このような異常検出アプローチがいくつか導入されているが、主に1種類のリカレントニューラルネットワーク(RNN)を使用し、1つのディープラーニングフレームワークで実装されている。
様々なディープラーニングフレームワークで利用可能な異なるタイプのRNNが、包括的な評価が欠如しているため、これらの異常検出手法の性能にどのように影響するかは明らかでない。
異常検出アプローチを実装するために、RNNの変種とディープラーニングフレームワークを任意に選択することは、その真のパフォーマンスを反映せず、ユーザを別のアプローチよりも好むように誤解させる可能性がある。
本稿では,一般的なディープラーニングフレームワークで利用可能な様々な種類のRNNが,リアルタイムの軽量時系列異常検出に与える影響について検討する。
我々は、最先端のいくつかのアプローチをレビューし、広く認識されている3つのディープラーニングフレームワークによってサポートされているよく知られたRNN変種を用いて、代表的な異常検出アプローチを実装した。
次に、実世界のオープンソース時系列データセットにまたがる各実装のパフォーマンスを分析するために、包括的な評価を行う。
評価結果は、リアルタイムで軽量な時系列異常検出のための適切なRNN変種とディープラーニングフレームワークを選択するための貴重なガイダンスを提供する。
関連論文リスト
- A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
本稿では,新しい手法のモジュラーフレームワークであるADerを包括的視覚異常検出ベンチマークとして紹介する。
このベンチマークには、産業ドメインと医療ドメインからの複数のデータセットが含まれており、15の最先端メソッドと9つの包括的なメトリクスを実装している。
我々は,異なる手法の長所と短所を客観的に明らかにし,多クラス視覚異常検出の課題と今後の方向性について考察する。
論文 参考訳(メタデータ) (2024-06-05T13:40:07Z) - Do Deep Neural Networks Contribute to Multivariate Time Series Anomaly
Detection? [12.419938668514042]
従来の機械学習とディープニューラルネットワークを用いた16種類の異常検出性能について検討した。
16の手法のそれぞれの性能を解析・比較することにより,他の手法よりも優れた手法群が存在しないことを示す。
論文 参考訳(メタデータ) (2022-04-04T16:32:49Z) - Time-Series Anomaly Detection with Implicit Neural Representation [0.38073142980733]
Inlicit Neural Representation-based Anomaly Detection (INRAD)を提案する。
入力に時間がかかり、その時点で対応する値を出力する単純な多層パーセプトロンを訓練する。
そして,その表現誤りを異常検出のための異常スコアとして利用する。
論文 参考訳(メタデータ) (2022-01-28T06:17:24Z) - Meta-learning One-class Classifiers with Eigenvalue Solvers for
Supervised Anomaly Detection [55.888835686183995]
教師付き異常検出のためのニューラルネットワークに基づくメタラーニング手法を提案する。
提案手法は,既存の異常検出法や少数ショット学習法よりも優れた性能を実現することを実験的に実証した。
論文 参考訳(メタデータ) (2021-03-01T01:43:04Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
本稿では,属性空間への分類器の露出を最大化するために,新しいサンプルを生成することを学習する逆学習手法を提案する。
我々のアプローチは、ディープニューラルネットワークが自然に発生する摂動に対して堅牢であることを可能にする。
論文 参考訳(メタデータ) (2020-12-03T10:17:30Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z) - ARCADe: A Rapid Continual Anomaly Detector [25.34227775187408]
連続異常検出(CAD)の新しい学習問題に対処する。
ニューラルネットをトレーニングするアプローチであるARCADeを提案する。
3つのデータセットを用いた実験の結果、ARCADeは連続学習と異常検出の文献からベースラインを大幅に上回っていることがわかった。
論文 参考訳(メタデータ) (2020-08-10T11:59:32Z) - ReRe: A Lightweight Real-time Ready-to-Go Anomaly Detection Approach for
Time Series [0.27528170226206433]
本稿では,リアルタイム・レディ・トゥ・ゴー・プロアクティブ・異常検出アルゴリズムReReを紹介する。
ReReは2つの軽量Long Short-Term Memory (LSTM)モデルを使用して、次のデータポイントが異常であるか否かを予測し、共同で判断する。
実世界の時系列データセットに基づく実験は、リアルタイム異常検出におけるReReの優れた性能を示す。
論文 参考訳(メタデータ) (2020-04-05T21:26:24Z) - RobustTAD: Robust Time Series Anomaly Detection via Decomposition and
Convolutional Neural Networks [37.16594704493679]
本稿では,ロバスト時系列異常検出フレームワークRobustTADを提案する。
時系列データのために、堅牢な季節差分解と畳み込みニューラルネットワークを統合する。
パブリックオンラインサービスとしてデプロイされ、Alibaba Groupのさまざまなビジネスシナリオで広く採用されている。
論文 参考訳(メタデータ) (2020-02-21T20:43:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。