Textile Anomaly Detection: Evaluation of the State-of-the-Art for Automated Quality Inspection of Carpet
- URL: http://arxiv.org/abs/2407.18450v1
- Date: Fri, 26 Jul 2024 01:13:59 GMT
- Title: Textile Anomaly Detection: Evaluation of the State-of-the-Art for Automated Quality Inspection of Carpet
- Authors: Briony Forsberg, Dr Henry Williams, Prof Bruce MacDonald, Tracy Chen, Dr Kirstine Hulse,
- Abstract summary: State-of-the-art unsupervised detection models were evaluated for the purpose of automated anomaly inspection of wool carpets.
A custom dataset of four unique types of carpet textures was created to thoroughly test the models.
The metrics of importance in this study were accuracy in detecting anomalous areas, the number of false detections, and the inference times of each model for real-time performance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this study, state-of-the-art unsupervised detection models were evaluated for the purpose of automated anomaly inspection of wool carpets. A custom dataset of four unique types of carpet textures was created to thoroughly test the models and their robustness in detecting subtle anomalies in complex textures. Due to the requirements of an inline inspection system in a manufacturing use case, the metrics of importance in this study were accuracy in detecting anomalous areas, the number of false detections, and the inference times of each model for real-time performance. Of the evaluated models, the student-teacher network based methods were found on average to yield the highest detection accuracy and lowest false detection rates. When trained on a multi-class dataset the models were found to yield comparable if not better results than single-class training. Finally, in terms of detection speed, with exception to the generative model, all other evaluated models were found to have comparable inference times on a GPU, with an average of 0.16s per image. On a CPU, most of these models typically produced results between 1.5 to 2 times the respective GPU inference times.
Related papers
- Source-Free Test-Time Adaptation For Online Surface-Defect Detection [29.69030283193086]
We propose a novel test-time adaptation surface-defect detection approach.
It adapts pre-trained models to new domains and classes during inference.
Experiments demonstrate it outperforms state-of-the-art techniques.
arXiv Detail & Related papers (2024-08-18T14:24:05Z) - Systematic Review: Anomaly Detection in Connected and Autonomous Vehicles [0.0]
This systematic review focuses on anomaly detection for connected and autonomous vehicles.
The most commonly used Artificial Intelligence (AI) algorithms employed in anomaly detection are neural networks like LSTM, CNN, and autoencoders, alongside one-class SVM.
There is a need for future research to investigate the deployment of anomaly detection to a vehicle to assess its performance on the road.
arXiv Detail & Related papers (2024-05-04T18:31:38Z) - Multifamily Malware Models [5.414308305392762]
We conduct experiments based on byte $n$-gram features to quantify the relationship between the generality of the training dataset and the accuracy of the corresponding machine learning models.
We find that neighborhood-based algorithms generalize surprisingly well, far outperforming the other machine learning techniques considered.
arXiv Detail & Related papers (2022-06-27T13:06:31Z) - Fake It Till You Make It: Near-Distribution Novelty Detection by
Score-Based Generative Models [54.182955830194445]
existing models either fail or face a dramatic drop under the so-called near-distribution" setting.
We propose to exploit a score-based generative model to produce synthetic near-distribution anomalous data.
Our method improves the near-distribution novelty detection by 6% and passes the state-of-the-art by 1% to 5% across nine novelty detection benchmarks.
arXiv Detail & Related papers (2022-05-28T02:02:53Z) - Log-based Anomaly Detection with Deep Learning: How Far Are We? [7.967230034960396]
We conduct an in-depth analysis of five state-of-the-art deep learning-based models for detecting system anomalies on four public log datasets.
Our results point out that all the studied models do not always work well.
arXiv Detail & Related papers (2022-02-09T06:27:11Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - Anomaly Detection in Cybersecurity: Unsupervised, Graph-Based and
Supervised Learning Methods in Adversarial Environments [63.942632088208505]
Inherent to today's operating environment is the practice of adversarial machine learning.
In this work, we examine the feasibility of unsupervised learning and graph-based methods for anomaly detection.
We incorporate a realistic adversarial training mechanism when training our supervised models to enable strong classification performance in adversarial environments.
arXiv Detail & Related papers (2021-05-14T10:05:10Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Deep Learning Frameworks for Pavement Distress Classification: A
Comparative Analysis [2.752817022620644]
This study deploys state-of-the-art deep learning algorithms to detect and characterize pavement distresses.
The models were trained using 21,041 images captured across urban and rural streets of Japan, Czech Republic and India.
The best performing model achieved an F1 score of 0.58 and 0.57 on two test datasets released by the IEEE Global Road Damage Detection Challenge.
arXiv Detail & Related papers (2020-10-21T00:26:59Z) - Understanding Classifier Mistakes with Generative Models [88.20470690631372]
Deep neural networks are effective on supervised learning tasks, but have been shown to be brittle.
In this paper, we leverage generative models to identify and characterize instances where classifiers fail to generalize.
Our approach is agnostic to class labels from the training set which makes it applicable to models trained in a semi-supervised way.
arXiv Detail & Related papers (2020-10-05T22:13:21Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.