論文の概要: Machine Unlearning using a Multi-GAN based Model
- arxiv url: http://arxiv.org/abs/2407.18467v1
- Date: Fri, 26 Jul 2024 02:28:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-29 14:39:47.848318
- Title: Machine Unlearning using a Multi-GAN based Model
- Title(参考訳): マルチGANモデルを用いた機械学習
- Authors: Amartya Hatua, Trung T. Nguyen, Andrew H. Sung,
- Abstract要約: 本稿では,GAN(Generative Adversarial Network)をベースとした新しい機械学習手法を提案する。
提案手法は,GANモデルを用いたデータ再構成と,学習済みモデルを微調整する2つのフェーズから構成される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article presents a new machine unlearning approach that utilizes multiple Generative Adversarial Network (GAN) based models. The proposed method comprises two phases: i) data reorganization in which synthetic data using the GAN model is introduced with inverted class labels of the forget datasets, and ii) fine-tuning the pre-trained model. The GAN models consist of two pairs of generators and discriminators. The generator discriminator pairs generate synthetic data for the retain and forget datasets. Then, a pre-trained model is utilized to get the class labels of the synthetic datasets. The class labels of synthetic and original forget datasets are inverted. Finally, all combined datasets are used to fine-tune the pre-trained model to get the unlearned model. We have performed the experiments on the CIFAR-10 dataset and tested the unlearned models using Membership Inference Attacks (MIA). The inverted class labels procedure and synthetically generated data help to acquire valuable information that enables the model to outperform state-of-the-art models and other standard unlearning classifiers.
- Abstract(参考訳): 本稿では,GAN(Generative Adversarial Network)をベースとした新しい機械学習手法を提案する。
提案手法は2つのフェーズから構成される。
一 忘れデータセットの逆クラスラベルでGANモデルを用いた合成データを導入したデータ再構成及び
二 事前訓練された模型を微調整すること。
GANモデルは2組のジェネレータと識別器で構成されている。
ジェネレータ判別器ペアは、保持および忘れたデータセットのための合成データを生成する。
次に、事前訓練されたモデルを使用して、合成データセットのクラスラベルを取得する。
合成データセットとオリジナルデータセットのクラスラベルは反転する。
最後に、すべての組み合わせデータセットを使用して、トレーニング済みのモデルを微調整して、未学習のモデルを取得する。
CIFAR-10データセット上で実験を行い、MIA(Commanship Inference Attacks)を用いて未学習モデルの試験を行った。
逆クラスラベルプロシージャと合成されたデータは、モデルが最先端のモデルやその他の標準の未学習分類器を上回り得る貴重な情報を取得するのに役立ちます。
関連論文リスト
- Generating Realistic Tabular Data with Large Language Models [49.03536886067729]
大規模言語モデル(LLM)は多様なタスクに使われてきたが、特徴と対象変数の正確な相関は捉えていない。
そこで本研究では,LLMに基づく3つの重要な改良を加えて,実データの特徴クラス相関を正しく把握する手法を提案する。
実験の結果,本手法は下流タスクにおいて,20個のデータセット上で10個のSOTAベースラインを著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2024-10-29T04:14:32Z) - CTSyn: A Foundational Model for Cross Tabular Data Generation [9.568990880984813]
Cross-Table Synthesizer (CTSyn) は、表データ生成に適した拡散ベースの基礎モデルである。
CTSynは、実用性と多様性において既存のテーブルシンセサイザーを著しく上回っている。
また、実際のデータで達成可能なものを超えて、下流機械学習のパフォーマンスを独自に向上させる。
論文 参考訳(メタデータ) (2024-06-07T04:04:21Z) - Exploring Beyond Logits: Hierarchical Dynamic Labeling Based on Embeddings for Semi-Supervised Classification [49.09505771145326]
モデル予測に依存しない階層型動的ラベル付け(HDL)アルゴリズムを提案し,画像埋め込みを用いてサンプルラベルを生成する。
本手法は,半教師付き学習における擬似ラベル生成のパラダイムを変える可能性がある。
論文 参考訳(メタデータ) (2024-04-26T06:00:27Z) - Private Synthetic Data Meets Ensemble Learning [15.425653946755025]
機械学習モデルが合成データに基づいてトレーニングされ、実際のデータにデプロイされると、しばしばパフォーマンス低下が発生する。
実データを用いた場合のパフォーマンス向上を目標として,下流モデルのトレーニングのための新たなアンサンブル戦略を導入する。
論文 参考訳(メタデータ) (2023-10-15T04:24:42Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
生成過程が下流MLタスクにどのように影響するかを示す。
本稿では、生成プロセスモデルパラメータの後方分布を近似するために、Deep Generative Ensemble (DGE)を導入する。
論文 参考訳(メタデータ) (2023-05-16T07:30:29Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
微調整された事前学習言語モデルは、下流のNLPモデルを構築するための主要なパラダイムとなっている。
これは、より優れた単一モデルを生み出すために、個々のモデル間で知識を融合させる障壁を生み出します。
パラメータ空間のモデルをマージするデータレス知識融合法を提案する。
論文 参考訳(メタデータ) (2022-12-19T20:46:43Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
我々は,観測されていない特徴分布を最大エントロピー仮説で近似することにより,ロジスティック回帰と類似した新しいモデルが,集約データからのみ学習されることを示す。
我々は、この方法で学習したモデルが、完全な非凝集データでトレーニングされたロジスティックモデルに匹敵するパフォーマンスを達成することができるという、いくつかの公開データセットに関する実証的な証拠を提示する。
論文 参考訳(メタデータ) (2022-10-05T09:17:27Z) - DATGAN: Integrating expert knowledge into deep learning for synthetic
tabular data [0.0]
合成データは、バイアスデータセットの修正や、シミュレーション目的の不足したオリジナルデータの置換など、さまざまなアプリケーションで使用することができる。
ディープラーニングモデルはデータ駆動であり、生成プロセスを制御するのは難しい。
本稿では、これらの制限に対処するため、DATGAN(Directed Acyclic Tabular GAN)を提案する。
論文 参考訳(メタデータ) (2022-03-07T16:09:03Z) - Using GPT-2 to Create Synthetic Data to Improve the Prediction
Performance of NLP Machine Learning Classification Models [0.0]
機械学習モデルの性能を高めるために合成データを利用するのが一般的になっている。
Yelpのピザレストランレビューデータセットを使って、トレーニング済みのGPT-2 Transformer Modelを微調整して、合成ピザレビューデータを生成しました。
そして、この合成データを元の本物のデータと組み合わせて、新しい共同データセットを作成しました。
論文 参考訳(メタデータ) (2021-04-02T20:20:42Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
本稿では,サンプルクラスタの探索と,複数の不完全な混合型ターゲットを同時にモデル化するFMRモデルを提案する。
我々は、高次元の学習フレームワークの下で、無症状のオラクルのパフォーマンス境界をモデルに提供します。
その結果,我々のモデルは最先端の性能を達成できることがわかった。
論文 参考訳(メタデータ) (2020-10-12T03:27:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。