How To Segment in 3D Using 2D Models: Automated 3D Segmentation of Prostate Cancer Metastatic Lesions on PET Volumes Using Multi-Angle Maximum Intensity Projections and Diffusion Models
- URL: http://arxiv.org/abs/2407.18555v1
- Date: Fri, 26 Jul 2024 07:08:05 GMT
- Title: How To Segment in 3D Using 2D Models: Automated 3D Segmentation of Prostate Cancer Metastatic Lesions on PET Volumes Using Multi-Angle Maximum Intensity Projections and Diffusion Models
- Authors: Amirhosein Toosi, Sara Harsini, François Bénard, Carlos Uribe, Arman Rahmim,
- Abstract summary: This study proposes a novel approach for automated segmentation of metastatic lesions in PSMA PET/CT 3D volumetric images.
Instead of 2D trans-angle slices or 3D volumes, the proposed approach segments the lesions on generated multi-angle maximum intensity projections (MA-MIPs) of the PSMA PET images.
Our proposed method achieved superior performance compared to state-of-the-art 3D segmentation approaches in terms of accuracy and robustness in detecting and segmenting small metastatic PCa lesions.
- Score: 0.2975630647042519
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prostate specific membrane antigen (PSMA) positron emission tomography/computed tomography (PET/CT) imaging provides a tremendously exciting frontier in visualization of prostate cancer (PCa) metastatic lesions. However, accurate segmentation of metastatic lesions is challenging due to low signal-to-noise ratios and variable sizes, shapes, and locations of the lesions. This study proposes a novel approach for automated segmentation of metastatic lesions in PSMA PET/CT 3D volumetric images using 2D denoising diffusion probabilistic models (DDPMs). Instead of 2D trans-axial slices or 3D volumes, the proposed approach segments the lesions on generated multi-angle maximum intensity projections (MA-MIPs) of the PSMA PET images, then obtains the final 3D segmentation masks from 3D ordered subset expectation maximization (OSEM) reconstruction of 2D MA-MIPs segmentations. Our proposed method achieved superior performance compared to state-of-the-art 3D segmentation approaches in terms of accuracy and robustness in detecting and segmenting small metastatic PCa lesions. The proposed method has significant potential as a tool for quantitative analysis of metastatic burden in PCa patients.
Related papers
- 2.5D Multi-view Averaging Diffusion Model for 3D Medical Image Translation: Application to Low-count PET Reconstruction with CT-less Attenuation Correction [17.897681480967087]
Positron Emission Tomography (PET) is an important clinical imaging tool but inevitably introduces radiation hazards to patients and healthcare providers.
It is desirable to develop 3D methods to translate the non-attenuation-corrected low-dose PET into attenuation-corrected standard-dose PET.
Recent diffusion models have emerged as a new state-of-the-art deep learning method for image-to-image translation, better than traditional CNN-based methods.
We developed a novel 2.5D Multi-view Averaging Diffusion Model (MADM) for 3D image-to-image translation with application on NAC
arXiv Detail & Related papers (2024-06-12T16:22:41Z) - Super-resolution of biomedical volumes with 2D supervision [84.5255884646906]
Masked slice diffusion for super-resolution exploits the inherent equivalence in the data-generating distribution across all spatial dimensions of biological specimens.
We focus on the application of SliceR to stimulated histology (SRH), characterized by its rapid acquisition of high-resolution 2D images but slow and costly optical z-sectioning.
arXiv Detail & Related papers (2024-04-15T02:41:55Z) - On the Localization of Ultrasound Image Slices within Point Distribution
Models [84.27083443424408]
Thyroid disorders are most commonly diagnosed using high-resolution Ultrasound (US)
Longitudinal tracking is a pivotal diagnostic protocol for monitoring changes in pathological thyroid morphology.
We present a framework for automated US image slice localization within a 3D shape representation.
arXiv Detail & Related papers (2023-09-01T10:10:46Z) - Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
This paper presents a coarse-to-fine PET reconstruction framework that consists of a coarse prediction module (CPM) and an iterative refinement module (IRM)
By delegating most of the computational overhead to the CPM, the overall sampling speed of our method can be significantly improved.
Two additional strategies, i.e., an auxiliary guidance strategy and a contrastive diffusion strategy, are proposed and integrated into the reconstruction process.
arXiv Detail & Related papers (2023-08-20T04:10:36Z) - Weakly Supervised AI for Efficient Analysis of 3D Pathology Samples [6.381153836752796]
We present Modality-Agnostic Multiple instance learning for volumetric Block Analysis (MAMBA) for processing 3D tissue images.
With the 3D block-based approach, MAMBA achieves an area under the receiver operating characteristic curve (AUC) of 0.86 and 0.74, superior to 2D traditional single-slice-based prognostication.
Further analyses reveal that the incorporation of greater tissue volume improves prognostic performance and mitigates risk prediction variability from sampling bias.
arXiv Detail & Related papers (2023-07-27T14:48:02Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
We propose a novel adaptation method for transferring the segment anything model (SAM) from 2D to 3D for promptable medical image segmentation.
Our model can outperform domain state-of-the-art medical image segmentation models on 3 out of 4 tasks, specifically by 8.25%, 29.87%, and 10.11% for kidney tumor, pancreas tumor, colon cancer segmentation, and achieve similar performance for liver tumor segmentation.
arXiv Detail & Related papers (2023-06-23T12:09:52Z) - View-Disentangled Transformer for Brain Lesion Detection [50.4918615815066]
We propose a novel view-disentangled transformer to enhance the extraction of MRI features for more accurate tumour detection.
First, the proposed transformer harvests long-range correlation among different positions in a 3D brain scan.
Second, the transformer models a stack of slice features as multiple 2D views and enhance these features view-by-view.
Third, we deploy the proposed transformer module in a transformer backbone, which can effectively detect the 2D regions surrounding brain lesions.
arXiv Detail & Related papers (2022-09-20T11:58:23Z) - Whole-Body Lesion Segmentation in 18F-FDG PET/CT [11.662584140924725]
The proposed model is designed on the basis of the joint 2D and 3D nnUNET architecture to predict lesions across the whole body.
We evaluate the proposed method in the context of AutoPet Challenge, which measures the lesion segmentation performance in the metrics of dice score, false-positive volume and false-negative volume.
arXiv Detail & Related papers (2022-09-16T10:49:53Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z) - Deep Volumetric Universal Lesion Detection using Light-Weight Pseudo 3D
Convolution and Surface Point Regression [23.916776570010285]
Computer-aided lesion/significant-findings detection techniques are at the core of medical imaging.
We propose a novel deep anchor-free one-stage VULD framework that incorporates (1) P3DC operators to recycle the architectural configurations and pre-trained weights from the off-the-shelf 2D networks.
New SPR method to effectively regress the 3D lesion spatial extents by pinpointing their representative key points on lesion surfaces.
arXiv Detail & Related papers (2020-08-30T19:42:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.