論文の概要: Content-driven Magnitude-Derivative Spectrum Complementary Learning for Hyperspectral Image Classification
- arxiv url: http://arxiv.org/abs/2407.18593v1
- Date: Fri, 26 Jul 2024 08:28:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-29 14:00:25.390216
- Title: Content-driven Magnitude-Derivative Spectrum Complementary Learning for Hyperspectral Image Classification
- Title(参考訳): ハイパースペクトル画像分類のためのコンテンツ駆動マグニチュード微分スペクトル補完学習
- Authors: Huiyan Bai, Tingfa Xu, Huan Chen, Peifu Liu, Jianan Li,
- Abstract要約: 現在の手法は特定のクラスで混乱を引き起こし、誤分類と精度の低下をもたらす可能性がある。
微分スペクトルは、隠蔽された情報を捕捉するのにより有効であることが証明され、それによってこれらの混乱したクラスを分離する際、明らかな優位性が得られる。
提案手法は,ワイドWHU-OHSデータセットと他の8つのベンチマークデータセットを用いた。
- 参考スコア(独自算出の注目度): 14.621504062838731
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Extracting discriminative information from complex spectral details in hyperspectral image (HSI) for HSI classification is pivotal. While current prevailing methods rely on spectral magnitude features, they could cause confusion in certain classes, resulting in misclassification and decreased accuracy. We find that the derivative spectrum proves more adept at capturing concealed information, thereby offering a distinct advantage in separating these confusion classes. Leveraging the complementarity between spectral magnitude and derivative features, we propose a Content-driven Spectrum Complementary Network based on Magnitude-Derivative Dual Encoder, employing these two features as combined inputs. To fully utilize their complementary information, we raise a Content-adaptive Point-wise Fusion Module, enabling adaptive fusion of dual-encoder features in a point-wise selective manner, contingent upon feature representation. To preserve a rich source of complementary information while extracting more distinguishable features, we introduce a Hybrid Disparity-enhancing Loss that enhances the differential expression of the features from the two branches and increases the inter-class distance. As a result, our method achieves state-of-the-art results on the extensive WHU-OHS dataset and eight other benchmark datasets.
- Abstract(参考訳): HSI分類のための高スペクトル画像(HSI)における複素スペクトルの詳細から識別情報を抽出することが重要である。
現在の一般的な手法はスペクトル等級に依存するが、特定のクラスで混乱を引き起こし、誤分類と精度の低下をもたらす可能性がある。
微分スペクトルは、隠蔽された情報を捕捉するのにより有効であることが証明され、それによってこれらの混乱したクラスを分離する際、明らかな優位性が得られる。
スペクトル等級と微分特徴の相補性を生かして,これら2つの特徴を複合入力として用いた,Magnitude-Derivative Dual Encoderに基づくコンテント駆動型スペクトル補完ネットワークを提案する。
相補的な情報を十分に活用するために,特徴表現に付随する2値エンコーダ特徴の適応的融合を可能にするコンテンツ適応型ポイントワイドフュージョンモジュールを立ち上げる。
より識別しやすい特徴を抽出しながら補足情報の豊富な情報源を保存するために,2つの枝から特徴の差分表現を高め,クラス間距離を増大させるハイブリッド・ディパリティ・エンハンシング・ロスを導入する。
その結果,ワイドなWHU-OHSデータセットと,他の8つのベンチマークデータセットについて,最先端の結果が得られた。
関連論文リスト
- PSVMA+: Exploring Multi-granularity Semantic-visual Adaption for Generalized Zero-shot Learning [116.33775552866476]
一般化ゼロショット学習(GZSL)は、目に見えない領域の知識を用いて、見えないものを識別する試みである。
GZSLは、属性の多様性とインスタンスの多様性により、視覚的セマンティックな対応が不十分である。
本稿では,不整合の解消に十分な視覚要素を収集できる多粒性プログレッシブ・セマンティック・視覚適応ネットワークを提案する。
論文 参考訳(メタデータ) (2024-10-15T12:49:33Z) - A Semantic-Aware and Multi-Guided Network for Infrared-Visible Image Fusion [41.34335755315773]
マルチモダリティ画像融合は、2つのソース画像から特定のモダリティ情報と共有モダリティ情報を融合することを目的としている。
本稿では,3分岐エンコーダデコーダアーキテクチャと,それに対応する融合層を融合戦略として提案する。
可視・近赤外画像融合および医用画像融合タスクにおける最先端手法と比較して,本手法は競争力のある結果を得た。
論文 参考訳(メタデータ) (2024-06-11T09:32:40Z) - Dual Relation Mining Network for Zero-Shot Learning [48.89161627050706]
本稿では,効果的な視覚・意味的相互作用を実現し,知識伝達のための属性間の意味的関係を学習するためのDual Relation Mining Network(DRMN)を提案する。
具体的には,多層的特徴融合により視覚情報を強化する視覚・意味的関係マイニングのためのデュアルアテンションブロック(DAB)を提案する。
セマンティック・インタラクション・トランスフォーマ(SIT)を用いて画像間の属性表現の一般化を促進する。
論文 参考訳(メタデータ) (2024-05-06T16:31:19Z) - Hyperspectral Image Reconstruction via Combinatorial Embedding of
Cross-Channel Spatio-Spectral Clues [6.580484964018551]
既存の学習に基づくハイパースペクトル再構成手法は、ハイパースペクトルバンド間の情報を完全に活用する際の限界を示す。
それぞれの超スペクトル空間における相互依存性について検討する。
これらの組み込み機能は、チャネル間相関をクエリすることで、完全に活用することができる。
論文 参考訳(メタデータ) (2023-12-18T11:37:19Z) - DiffSpectralNet : Unveiling the Potential of Diffusion Models for
Hyperspectral Image Classification [6.521187080027966]
我々は拡散と変圧器技術を組み合わせたDiffSpectralNetと呼ばれる新しいネットワークを提案する。
まず,拡散モデルに基づく教師なし学習フレームワークを用いて,高レベル・低レベルのスペクトル空間的特徴を抽出する。
この拡散法はスペクトル空間の特徴を多様かつ有意義に抽出し,HSI分類の改善につながる。
論文 参考訳(メタデータ) (2023-10-29T15:26:37Z) - Hodge-Aware Contrastive Learning [101.56637264703058]
単純コンプレックスは、マルチウェイ依存によるデータのモデリングに有効である。
我々は、単純なデータを処理するための対照的な自己教師付き学習手法を開発した。
論文 参考訳(メタデータ) (2023-09-14T00:40:07Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
単一ハイパースペクトル像超解像(単一HSI-SR)は、低分解能観測から高分解能ハイパースペクトル像を復元することを目的としている。
本稿では,1つのHSI-SRの繰り返し精製構造を持つESSA注目組込みトランスフォーマネットワークであるESSAformerを提案する。
論文 参考訳(メタデータ) (2023-07-26T07:45:14Z) - Deep Diversity-Enhanced Feature Representation of Hyperspectral Images [87.47202258194719]
トポロジを改良して3次元畳み込みを補正し,上行階の高次化を図る。
また、要素間の独立性を最大化するために特徴マップに作用する新しい多様性対応正規化(DA-Reg)項を提案する。
提案したRe$3$-ConvSetとDA-Regの優位性を実証するために,様々なHS画像処理および解析タスクに適用する。
論文 参考訳(メタデータ) (2023-01-15T16:19:18Z) - CoCoNet: Coupled Contrastive Learning Network with Multi-level Feature
Ensemble for Multi-modality Image Fusion [72.8898811120795]
我々は、赤外線と可視画像の融合を実現するために、CoCoNetと呼ばれるコントラスト学習ネットワークを提案する。
本手法は,主観的評価と客観的評価の両面において,最先端(SOTA)性能を実現する。
論文 参考訳(メタデータ) (2022-11-20T12:02:07Z) - Fusion of Dual Spatial Information for Hyperspectral Image
Classification [26.304992631350114]
双対空間情報の融合を利用した新しいハイパースペクトル画像分類フレームワークを提案する。
異なるシーンの3つのデータセットで行った実験は、提案手法が他の最先端の分類手法よりも優れていることを示している。
論文 参考訳(メタデータ) (2020-10-23T12:20:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。