論文の概要: IOVS4NeRF:Incremental Optimal View Selection for Large-Scale NeRFs
- arxiv url: http://arxiv.org/abs/2407.18611v1
- Date: Fri, 26 Jul 2024 09:11:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-29 13:50:27.578279
- Title: IOVS4NeRF:Incremental Optimal View Selection for Large-Scale NeRFs
- Title(参考訳): IOVS4NeRF:大規模NeRFの最適視点選択
- Authors: Jingpeng Xie, Shiyu Tan, Yuanlei Wang, Yizhen Lao,
- Abstract要約: これらの問題に対処する新しいNeRFフレームワークを提案する。
提案手法は,画像コンテンツを使用し,次に最適なビューを反復的に計画するデータをポーズする。
プラグインツールとして機能し、レンダリングの改善、ベースラインのパフォーマンス向上、それに類する以前の作業を支援することができる。
- 参考スコア(独自算出の注目度): 3.9248546555042365
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Urban-level three-dimensional reconstruction for modern applications demands high rendering fidelity while minimizing computational costs. The advent of Neural Radiance Fields (NeRF) has enhanced 3D reconstruction, yet it exhibits artifacts under multiple viewpoints. In this paper, we propose a new NeRF framework method to address these issues. Our method uses image content and pose data to iteratively plan the next best view. A crucial aspect of this method involves uncertainty estimation, guiding the selection of views with maximum information gain from a candidate set. This iterative process enhances rendering quality over time. Simultaneously, we introduce the Vonoroi diagram and threshold sampling together with flight classifier to boost the efficiency, while keep the original NeRF network intact. It can serve as a plug-in tool to assist in better rendering, outperforming baselines and similar prior works.
- Abstract(参考訳): 都市レベルの3次元再構成は、計算コストを最小化しながら高いレンダリング忠実度を必要とする。
ニューラル・レージアンス・フィールド(NeRF)の出現により3次元再構成が強化されたが、複数の視点で人工物が展示されている。
本稿では,これらの問題に対処する新しいNeRFフレームワークを提案する。
提案手法は,画像コンテンツを使用し,次に最適なビューを反復的に計画するデータをポーズする。
この手法の重要な側面は不確実性の推定であり、候補集合からの最大情報ゲインによるビューの選択を導くことである。
この反復的なプロセスは、時間の経過とともにレンダリング品質を高める。
同時に、Vonoroiダイアグラムとしきい値サンプリングをフライト分類器と共に導入し、元のNeRFネットワークをそのまま維持する。
プラグインツールとして機能し、レンダリングの改善、ベースラインのパフォーマンス向上、それに類する以前の作業を支援することができる。
関連論文リスト
- NeRF-VPT: Learning Novel View Representations with Neural Radiance
Fields via View Prompt Tuning [63.39461847093663]
本研究では,これらの課題に対処するための新しいビュー合成手法であるNeRF-VPTを提案する。
提案するNeRF-VPTは、先行レンダリング結果から得られたRGB情報を、その後のレンダリングステージのインストラクティブな視覚的プロンプトとして機能するカスケーディングビュープロンプトチューニングパラダイムを用いている。
NeRF-VPTは、追加のガイダンスや複雑なテクニックに頼ることなく、トレーニングステージ毎に前のステージレンダリングからRGBデータをサンプリングするだけである。
論文 参考訳(メタデータ) (2024-03-02T22:08:10Z) - PC-NeRF: Parent-Child Neural Radiance Fields Using Sparse LiDAR Frames
in Autonomous Driving Environments [3.1969023045814753]
親子ニューラルレイディアンス場(PC-NeRF)と呼ばれる3次元シーン再構成と新しいビュー合成フレームワークを提案する。
PC-NeRFは、シーン、セグメント、ポイントレベルを含む階層的な空間分割とマルチレベルシーン表現を実装している。
広範にわたる実験により,PC-NeRFは大規模シーンにおける高精度なLiDARビュー合成と3次元再構成を実現することが証明された。
論文 参考訳(メタデータ) (2024-02-14T17:16:39Z) - ProvNeRF: Modeling per Point Provenance in NeRFs as a Stochastic Field [52.09661042881063]
テキストフィールドとしてNeRFのbfprovenance(可視な位置)をモデル化する手法を提案する。
我々は、NeRF最適化におけるポイントごとの精度のモデリングにより、新しいビュー合成と不確実性推定の改善につながる情報により、モデルが強化されることを示す。
論文 参考訳(メタデータ) (2024-01-16T06:19:18Z) - PNeRFLoc: Visual Localization with Point-based Neural Radiance Fields [54.8553158441296]
統一された点ベース表現に基づく新しい視覚的ローカライゼーションフレームワーク PNeRFLoc を提案する。
一方、PNeRFLocは2次元特徴点と3次元特徴点をマッチングして初期ポーズ推定をサポートする。
一方、レンダリングベースの最適化を用いた新しいビュー合成によるポーズ改善も実現している。
論文 参考訳(メタデータ) (2023-12-17T08:30:00Z) - VQ-NeRF: Vector Quantization Enhances Implicit Neural Representations [25.88881764546414]
VQ-NeRFは、ベクトル量子化による暗黙の神経表現を強化するための効率的なパイプラインである。
圧縮および原スケールの両スケールでNeRFモデルを同時に最適化する,革新的なマルチスケールNeRFサンプリング方式を提案する。
我々は3次元再構成の幾何学的忠実度とセマンティックコヒーレンスを改善するためにセマンティックロス関数を組み込んだ。
論文 参考訳(メタデータ) (2023-10-23T01:41:38Z) - Leveraging Neural Radiance Fields for Uncertainty-Aware Visual
Localization [56.95046107046027]
我々は,Neural Radiance Fields (NeRF) を用いてシーン座標回帰のためのトレーニングサンプルを生成することを提案する。
レンダリングにおけるNeRFの効率にもかかわらず、レンダリングされたデータの多くはアーティファクトによって汚染されるか、最小限の情報ゲインしか含まない。
論文 参考訳(メタデータ) (2023-10-10T20:11:13Z) - Single-Stage Diffusion NeRF: A Unified Approach to 3D Generation and
Reconstruction [77.69363640021503]
3D対応画像合成は、シーン生成や画像からの新規ビュー合成など、様々なタスクを含む。
本稿では,様々な物体の多視点画像から,ニューラルラディアンス場(NeRF)の一般化可能な事前学習を行うために,表現拡散モデルを用いた統一的アプローチであるSSDNeRFを提案する。
論文 参考訳(メタデータ) (2023-04-13T17:59:01Z) - ActiveNeRF: Learning where to See with Uncertainty Estimation [36.209200774203005]
近年,Neural Radiance Fields (NeRF) は,3次元シーンの再構成や,スパース2次元画像からの新規ビューの合成に有望な性能を示した。
本稿では,制約のある入力予算で3Dシーンをモデル化することを目的とした,新しい学習フレームワークであるActiveNeRFを提案する。
論文 参考訳(メタデータ) (2022-09-18T12:09:15Z) - CLONeR: Camera-Lidar Fusion for Occupancy Grid-aided Neural
Representations [77.90883737693325]
本稿では,スパース入力センサビューから観測される大規模な屋外運転シーンをモデル化することで,NeRFを大幅に改善するCLONeRを提案する。
これは、NeRFフレームワーク内の占有率と色学習を、それぞれLiDARとカメラデータを用いてトレーニングされた個別のMulti-Layer Perceptron(MLP)に分離することで実現される。
さらに,NeRFモデルと平行に3D Occupancy Grid Maps(OGM)を構築する手法を提案し,この占有グリッドを利用して距離空間のレンダリングのために線に沿った点のサンプリングを改善する。
論文 参考訳(メタデータ) (2022-09-02T17:44:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。