CardioLab: Laboratory Values Estimation from Electrocardiogram Features -- An Exploratory Study
- URL: http://arxiv.org/abs/2407.18629v2
- Date: Sun, 1 Sep 2024 18:49:10 GMT
- Title: CardioLab: Laboratory Values Estimation from Electrocardiogram Features -- An Exploratory Study
- Authors: Juan Miguel Lopez Alcaraz, Nils Strodthoff,
- Abstract summary: Laboratory value represents a cornerstone of medical diagnostics, but suffers from slow turnaround times and high costs.
Despite its transformative potential, this domain remains relatively underexplored within the medical community.
We investigate the feasibility of inferring laboratory values from ECG features and patient demographics using tree-based models.
- Score: 1.068128849363198
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Introduction: Laboratory value represents a cornerstone of medical diagnostics, but suffers from slow turnaround times, and high costs and only provides information about a single point in time. The continuous estimation of laboratory values from non-invasive data such as electrocardiogram (ECG) would therefore mark a significant frontier in healthcare monitoring. Despite its transformative potential, this domain remains relatively underexplored within the medical community. Methods: In this preliminary study, we used a publicly available dataset (MIMIC-IV-ECG) to investigate the feasibility of inferring laboratory values from ECG features and patient demographics using tree-based models (XGBoost). We define the prediction task as a binary prediction problem of predicting whether the lab value falls into low or high abnormalities. The model performance can then be assessed using AUROC. Results: Our findings demonstrate promising results in the estimation of laboratory values related to different organ systems based on a small yet comprehensive set of features. While further research and validation are warranted to fully assess the clinical utility and generalizability of ECG-based estimation in healthcare monitoring, our findings lay the groundwork for future investigations into approaches to laboratory value estimation using ECG data. Such advancements hold promise for revolutionizing predictive healthcare applications, offering faster, non-invasive, and more affordable means of patient monitoring.
Related papers
- CardioLab: Laboratory Values Estimation and Monitoring from Electrocardiogram Signals -- A Multimodal Deep Learning Approach [1.068128849363198]
We utilize MIMIC-IV dataset to develop multimodal deep-learning models to demonstrate the feasibility of estimating (real-time) and monitoring (predict at future intervals) laboratory value abnormalities.
The models exhibit a strong predictive performance with AUROC scores above 0.70 in a statistically significant manner for 23 laboratory values in the estimation setting and up to 26 values in the monitoring setting.
arXiv Detail & Related papers (2024-11-22T12:10:03Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - SSSD-ECG-nle: New Label Embeddings with Structured State-Space Models for ECG generation [0.0]
Diffusion models have made significant progress in recent years, creating the possibility for synthesizing data comparable to the real one.
We propose the SSSD-ECG-nle architecture based on SSSD-ECG with a modified conditioning mechanism and demonstrate its efficiency on downstream tasks.
arXiv Detail & Related papers (2024-07-15T16:31:25Z) - Evaluating the Fairness of the MIMIC-IV Dataset and a Baseline
Algorithm: Application to the ICU Length of Stay Prediction [65.268245109828]
This paper uses the MIMIC-IV dataset to examine the fairness and bias in an XGBoost binary classification model predicting the ICU length of stay.
The research reveals class imbalances in the dataset across demographic attributes and employs data preprocessing and feature extraction.
The paper concludes with recommendations for fairness-aware machine learning techniques for mitigating biases and the need for collaborative efforts among healthcare professionals and data scientists.
arXiv Detail & Related papers (2023-12-31T16:01:48Z) - ElectroCardioGuard: Preventing Patient Misidentification in
Electrocardiogram Databases through Neural Networks [0.0]
In clinical practice, the assignment of captured ECG recordings to incorrect patients can occur inadvertently.
We propose a small and efficient neural-network based model for determining whether two ECGs originate from the same patient.
Our model achieves state-of-the-art performance in gallery-probe patient identification on PTB-XL while utilizing 760x fewer parameters.
arXiv Detail & Related papers (2023-06-09T18:53:25Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
We propose a new method that uses medical text of Electronic Health Records for prediction.
We represent discharge summaries of patients with multiview graphs enhanced by an external knowledge graph.
Experimental results prove the effectiveness of our method, yielding state-of-the-art performance.
arXiv Detail & Related papers (2021-12-19T01:45:57Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - Deep Learning with Heterogeneous Graph Embeddings for Mortality
Prediction from Electronic Health Records [2.2859570135269625]
We train a Heterogeneous Graph Model (HGM) on Electronic Health Record data and use the resulting embedding vector as additional information added to a Conal Neural Network (CNN) model for predicting in-hospital mortality.
We find that adding HGM to a CNN model increases the mortality prediction accuracy up to 4%.
arXiv Detail & Related papers (2020-12-28T02:27:09Z) - CovidCare: Transferring Knowledge from Existing EMR to Emerging Epidemic
for Interpretable Prognosis [20.701122594508675]
We propose a deep-learning-based approach, CovidCare, to enhance the prognosis for inpatients with emerging infectious diseases.
CovidCare learns to embed the COVID-19-related medical features based on massive existing EMR data via transfer learning.
We conduct the length of stay prediction experiments for patients on a real-world COVID-19 dataset.
arXiv Detail & Related papers (2020-07-17T09:20:56Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
This study explores the use of Continuous Glucose Monitoring (CGM) data as input for digital decision support tools.
We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction.
arXiv Detail & Related papers (2020-02-06T16:39:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.