論文の概要: Right Now, Wrong Then: Non-Stationary Direct Preference Optimization under Preference Drift
- arxiv url: http://arxiv.org/abs/2407.18676v1
- Date: Fri, 26 Jul 2024 11:38:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-29 13:40:43.545348
- Title: Right Now, Wrong Then: Non-Stationary Direct Preference Optimization under Preference Drift
- Title(参考訳): いま, 誤り: 選好ドリフト下での非定常直接選好最適化
- Authors: Seongho Son, William Bankes, Sayak Ray Chowdhury, Brooks Paige, Ilija Bogunovic,
- Abstract要約: 現在の選好最適化アルゴリズムは、モデリングにおける時間的選好のドリフトを考慮しない。
非定常直接選好最適化(NS-DPO)を提案する。
NS-DPO微調整LDMは非定常条件下では頑健であることを示す。
- 参考スコア(独自算出の注目度): 21.16837827950466
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement learning from human feedback (RLHF) aligns Large Language Models (LLMs) with human preferences. However, these preferences can often change over time due to external factors (e.g. environment change and societal influence). Consequently, what was wrong then might be right now. Current preference optimization algorithms do not account for temporal preference drift in their modeling, which can lead to severe misalignment. To address this limitation, we use a Dynamic Bradley-Terry model that models preferences via time-dependent reward functions, and propose Non-Stationary Direct Preference Optimisation (NS-DPO). By introducing a discount parameter in the loss function, NS-DPO applies exponential weighting, which proportionally focuses learning on more time-relevant datapoints. We theoretically analyse the convergence of NS-DPO in the offline setting, providing upper bounds on the estimation error caused by non-stationary preferences. Finally, we demonstrate the effectiveness of NS-DPO1 for fine-tuning LLMs in scenarios with drifting preferences. By simulating preference drift using renowned reward models and modifying popular LLM datasets accordingly, we show that NS-DPO fine-tuned LLMs remain robust under non-stationarity, significantly outperforming baseline algorithms that ignore temporal preference changes, without sacrificing performance in stationary cases.
- Abstract(参考訳): 人間のフィードバック(RLHF)からの強化学習は、大規模言語モデル(LLM)と人間の好みを一致させる。
しかしながら、これらの嗜好は外的要因(例えば環境の変化や社会的影響)によって、時間とともに変化することがある。
そのため、そのときの間違いは、今となってはあり得ない。
現在の選好最適化アルゴリズムは、モデリングにおける時間的選好のドリフトを考慮しない。
この制限に対処するために、時間依存の報酬関数を介して嗜好をモデル化する動的ブラッドリー・テリーモデルを使用し、非定常直接選好最適化(NS-DPO)を提案する。
損失関数に割引パラメータを導入することで、NS-DPOは指数重み付けを適用する。
理論上は、非定常選好による推定誤差の上限として、NS-DPOのオフライン環境での収束を解析する。
最後に,漂流嗜好のあるシナリオにおける微調整LDMに対するNS-DPO1の有効性を示す。
そこで, NS-DPO の微調整 LLM は非定常条件下では頑健であり, 定常の場合の性能を犠牲にすることなく, 時間的嗜好変化を無視するベースラインアルゴリズムよりもはるかに優れていることを示す。
関連論文リスト
- Towards Improved Preference Optimization Pipeline: from Data Generation to Budget-Controlled Regularization [14.50339880957898]
我々は、嗜好データ生成と正規化の訓練技術について、より深く検討することで、嗜好最適化パイプラインの改善を目指している。
選好データ生成のために、ペアワイズ比較信号を用いて完了の選好ランキングを導出する反復的なペアワイズランキング機構を提案する。
正規化のトレーニングでは、LLMが好むサンプルの確率をわずかに減少させると、好みの最適化がよりよく収束する傾向が観察される。
論文 参考訳(メタデータ) (2024-11-07T23:03:11Z) - Uncertainty-Penalized Direct Preference Optimization [52.387088396044206]
我々は、優先不確実性ペナル化スキームを導入し、DPOの悲観的な枠組みを開発する。
ペナル化は、不確実なサンプルの損失勾配を減衰させる損失の補正として機能する。
我々は,バニラDPOと比較して全体的な性能が向上し,高い不確実性選択/拒絶反応によるプロンプトの完成度も向上した。
論文 参考訳(メタデータ) (2024-10-26T14:24:37Z) - ASFT: Aligned Supervised Fine-Tuning through Absolute Likelihood [14.512464277772194]
Aligned Supervised Fine-Tuning (ASFT)は、大規模言語モデルとペアワイズデータセットの整合性を改善する効果的なアプローチである。
ASFTは、DPO損失関数が人間の不適切なデータを生成する確率を減少させる問題を緩和する。
大規模な実験により、ASFTは効果的なアライメントアプローチであり、既存の手法より一貫して優れていることが示された。
論文 参考訳(メタデータ) (2024-09-14T11:39:13Z) - Minor DPO reject penalty to increase training robustness [8.971332948872185]
人間の嗜好からの学習は、ダウンストリームタスクにおいて、事前学習されたLLMを人間の嗜好に合わせるために、大規模言語モデル(LLM)の微調整ステップで使用されるパラダイムである。
近年,簡易なRLフリー手法でアライメント問題を解決するために,DPO(Direct Preference Optimization)が提案されている。
本稿では、DPOにおける$beta$の動作メカニズムを分析し、RLアルゴリズムとDPOの構文差を明らかにし、DPOの単純化による潜在的な不足について理解する。
論文 参考訳(メタデータ) (2024-08-19T09:29:31Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
既存のペアデータを必要としない、効果的でスケーラブルなトレーニングパラダイムである自己拡張型優先度最適化(SAPO)を導入する。
負の反応を自律的に生成するセルフプレイの概念に基づいて、我々はさらに、データ探索とエクスプロイトを強化するために、非政治的な学習パイプラインを組み込む。
論文 参考訳(メタデータ) (2024-05-31T14:21:04Z) - Preference Learning Algorithms Do Not Learn Preference Rankings [62.335733662381884]
選好学習は、好ましくない出力よりも、好ましくない出力により高い確率を割り当てるようにモデルを訓練する、という従来の知恵を考察する。
多くの最先端の選好調整モデルでは、一般的な選好データセットでは60%未満のランキング精度が得られている。
論文 参考訳(メタデータ) (2024-05-29T21:29:44Z) - Robust Preference Optimization through Reward Model Distillation [68.65844394615702]
言語モデル (LM) は、好みのアノテーションから派生した報酬関数を最大化する。
DPOは、報酬モデルや強化学習を適用することなく、優先データに直接ポリシーを訓練する一般的なオフラインアライメント手法である。
この現象を解析し, 生成対よりも真の嗜好分布のより良いプロキシを得るため, 蒸留を提案する。
論文 参考訳(メタデータ) (2024-05-29T17:39:48Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
人間の嗜好を学習する際の分布変化と不確実性の一形態として,不一致の原因を同定する。
過度な最適化を緩和するために、まず、逆選択された報酬モデルに最適なポリシーを選択する理論アルゴリズムを提案する。
報奨モデルとそれに対応する最適ポリシーの等価性を用いて、優先最適化損失と教師付き学習損失を組み合わせた単純な目的を特徴とする。
論文 参考訳(メタデータ) (2024-05-26T05:38:50Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
複数の参照モデルを用いた直接選好最適化のための新しいクローズドフォームの定式化を提案する。
得られたアルゴリズムであるMulti-Reference Preference Optimization (MRPO)は、様々な参照モデルからより広範な事前知識を活用する。
MRPOを微調整したLLMは,データ不足や多量性に関わらず,様々な嗜好データにおいてより一般化されていることを示す。
論文 参考訳(メタデータ) (2024-05-26T00:29:04Z) - Preference as Reward, Maximum Preference Optimization with Importance Sampling [3.7040071165219595]
我々は、重要サンプリングの観点から、単純で直感的な非政治的選好最適化アルゴリズムを提案し、これを最大選好最適化(MPO)と呼ぶ。
MPOは、RLHFとIPOの目的を、独占的アルゴリズムであると同時に組み合わせることで、両方の世界のベストを達成している。
論文 参考訳(メタデータ) (2023-12-27T06:34:54Z) - Statistical Rejection Sampling Improves Preference Optimization [42.57245965632205]
提案手法は,リジェクションサンプリングを用いた最適ポリシーからのソース選好データに対する新しいアプローチを提案する。
また、嗜好モデルの観点から、SLiC(Sequence Likelihood)とDPO(Direct Preference Optimization)の両方で使用される損失関数を強化する統一フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-13T01:07:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。