Evaluating Human Trajectory Prediction with Metamorphic Testing
- URL: http://arxiv.org/abs/2407.18756v1
- Date: Fri, 26 Jul 2024 14:10:14 GMT
- Title: Evaluating Human Trajectory Prediction with Metamorphic Testing
- Authors: Helge Spieker, Nassim Belmecheri, Arnaud Gotlieb, Nadjib Lazaar,
- Abstract summary: The prediction of human trajectories is important for planning in autonomous systems that act in the real world.
No prediction does precisely match any future trajectory.
We explore the application of metamorphic testing for human trajectory prediction.
- Score: 15.836913530330786
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The prediction of human trajectories is important for planning in autonomous systems that act in the real world, e.g. automated driving or mobile robots. Human trajectory prediction is a noisy process, and no prediction does precisely match any future trajectory. It is therefore approached as a stochastic problem, where the goal is to minimise the error between the true and the predicted trajectory. In this work, we explore the application of metamorphic testing for human trajectory prediction. Metamorphic testing is designed to handle unclear or missing test oracles. It is well-designed for human trajectory prediction, where there is no clear criterion of correct or incorrect human behaviour. Metamorphic relations rely on transformations over source test cases and exploit invariants. A setting well-designed for human trajectory prediction where there are many symmetries of expected human behaviour under variations of the input, e.g. mirroring and rescaling of the input data. We discuss how metamorphic testing can be applied to stochastic human trajectory prediction and introduce the Wasserstein Violation Criterion to statistically assess whether a follow-up test case violates a label-preserving metamorphic relation.
Related papers
- Adaptive Human Trajectory Prediction via Latent Corridors [49.13061580045407]
We formalize the problem of scene-specific adaptive trajectory prediction.
We propose a new adaptation approach inspired by prompt tuning called latent corridors.
With less than 0.1% additional model parameters, we see up to 23.9% ADE improvement in MOT Synth simulated data and 16.4% ADE in MOT and Wildtrack real pedestrian data.
arXiv Detail & Related papers (2023-12-11T18:59:12Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
Under dynamic traffic scenarios, planning based on deterministic predictions is not trustworthy.
The authors propose to quantify uncertainty during forecasting using approximation which deterministic approaches fail to capture.
The effect of dropout weights and long-term prediction on future state uncertainty has been studied.
arXiv Detail & Related papers (2022-05-04T04:23:38Z) - Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion [88.45326906116165]
We present a new framework to formulate the trajectory prediction task as a reverse process of motion indeterminacy diffusion (MID)
We encode the history behavior information and the social interactions as a state embedding and devise a Transformer-based diffusion model to capture the temporal dependencies of trajectories.
Experiments on the human trajectory prediction benchmarks including the Stanford Drone and ETH/UCY datasets demonstrate the superiority of our method.
arXiv Detail & Related papers (2022-03-25T16:59:08Z) - Trajectory Forecasting from Detection with Uncertainty-Aware Motion
Encoding [121.66374635092097]
Trajectories obtained from object detection and tracking are inevitably noisy.
We propose a trajectory predictor directly based on detection results without relying on explicitly formed trajectories.
arXiv Detail & Related papers (2022-02-03T09:09:56Z) - Towards Robust Human Trajectory Prediction in Raw Videos [8.301214274565819]
We study the problem of human trajectory forecasting in raw videos.
We show that the prediction accuracy can be severely affected by various types of tracking errors.
We propose a simple yet effective strategy to correct the tracking failures by enforcing prediction consistency over time.
arXiv Detail & Related papers (2021-08-18T17:27:26Z) - Human Trajectory Prediction via Counterfactual Analysis [87.67252000158601]
Forecasting human trajectories in complex dynamic environments plays a critical role in autonomous vehicles and intelligent robots.
Most existing methods learn to predict future trajectories by behavior clues from history trajectories and interaction clues from environments.
We propose a counterfactual analysis method for human trajectory prediction to investigate the causality between the predicted trajectories and input clues.
arXiv Detail & Related papers (2021-07-29T17:41:34Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
We present a Sparse Graph Convolution Network(SGCN) for pedestrian trajectory prediction.
Specifically, the SGCN explicitly models the sparse directed interaction with a sparse directed spatial graph to capture adaptive interaction pedestrians.
visualizations indicate that our method can capture adaptive interactions between pedestrians and their effective motion tendencies.
arXiv Detail & Related papers (2021-04-04T03:17:42Z) - On complementing end-to-end human motion predictors with planning [31.025766804649464]
High capacity end-to-end approaches for human motion prediction have the ability to represent subtle nuances in human behavior, but struggle with robustness to out of distribution inputs and tail events.
Planning-based prediction, on the other hand, can reliably output decent-but-not-great predictions.
arXiv Detail & Related papers (2021-03-09T19:02:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.