Integrating Large Language Models for Genetic Variant Classification
- URL: http://arxiv.org/abs/2411.05055v1
- Date: Thu, 07 Nov 2024 13:45:56 GMT
- Title: Integrating Large Language Models for Genetic Variant Classification
- Authors: Youssef Boulaimen, Gabriele Fossi, Leila Outemzabet, Nathalie Jeanray, Oleksandr Levenets, Stephane Gerart, Sebastien Vachenc, Salvatore Raieli, Joanna Giemza,
- Abstract summary: Large Language Models (LLMs) have emerged as transformative tools in genetics.
This study investigates the integration of state-of-the-art LLMs, including GPN-MSA, ESM1b, and AlphaMissense.
Our approach evaluates these integrated models using the well-annotated ProteinGym and ClinVar datasets.
- Score: 12.244115429231888
- License:
- Abstract: The classification of genetic variants, particularly Variants of Uncertain Significance (VUS), poses a significant challenge in clinical genetics and precision medicine. Large Language Models (LLMs) have emerged as transformative tools in this realm. These models can uncover intricate patterns and predictive insights that traditional methods might miss, thus enhancing the predictive accuracy of genetic variant pathogenicity. This study investigates the integration of state-of-the-art LLMs, including GPN-MSA, ESM1b, and AlphaMissense, which leverage DNA and protein sequence data alongside structural insights to form a comprehensive analytical framework for variant classification. Our approach evaluates these integrated models using the well-annotated ProteinGym and ClinVar datasets, setting new benchmarks in classification performance. The models were rigorously tested on a set of challenging variants, demonstrating substantial improvements over existing state-of-the-art tools, especially in handling ambiguous and clinically uncertain variants. The results of this research underline the efficacy of combining multiple modeling approaches to significantly refine the accuracy and reliability of genetic variant classification systems. These findings support the deployment of these advanced computational models in clinical environments, where they can significantly enhance the diagnostic processes for genetic disorders, ultimately pushing the boundaries of personalized medicine by offering more detailed and actionable genetic insights.
Related papers
- GENERator: A Long-Context Generative Genomic Foundation Model [66.46537421135996]
We present a generative genomic foundation model featuring a context length of 98k base pairs (bp) and 1.2B parameters.
The model adheres to the central dogma of molecular biology, accurately generating protein-coding sequences.
It also shows significant promise in sequence optimization, particularly through the prompt-responsive generation of promoter sequences.
arXiv Detail & Related papers (2025-02-11T05:39:49Z) - scReader: Prompting Large Language Models to Interpret scRNA-seq Data [12.767105992391555]
We propose an innovative hybrid approach that integrates the general knowledge capabilities of large language models with domain-specific representation models for single-cell omics data interpretation.
By inputting single-cell gene-level expression data with prompts, we effectively model cellular representations based on the differential expression levels of genes across various species and cell types.
arXiv Detail & Related papers (2024-12-24T04:28:42Z) - Stabilizing Machine Learning for Reproducible and Explainable Results: A Novel Validation Approach to Subject-Specific Insights [2.7516838144367735]
We propose a novel validation approach that uses a general ML model to ensure reproducible performance and robust feature importance analysis.
We tested a single Random Forest (RF) model on nine datasets varying in domain, sample size, and demographics.
Our repeated trials approach consistently identified key features at the subject level and improved group-level feature importance analysis.
arXiv Detail & Related papers (2024-12-16T23:14:26Z) - Stacked ensemble\-based mutagenicity prediction model using multiple modalities with graph attention network [0.9736758288065405]
Mutagenicity is a concern due to its association with genetic mutations which can result in a variety of negative consequences.
In this work, we introduce a novel stacked ensemble based mutagenicity prediction model.
arXiv Detail & Related papers (2024-09-03T09:14:21Z) - Interpreting artificial neural networks to detect genome-wide association signals for complex traits [0.0]
We trained artificial neural networks to predict complex traits using both simulated and real genotype-phenotype datasets.
We detected multiple loci associated with schizophrenia.
arXiv Detail & Related papers (2024-07-26T15:20:42Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
We introduce GenBench, a benchmarking suite specifically tailored for evaluating the efficacy of Genomic Foundation Models.
GenBench offers a modular and expandable framework that encapsulates a variety of state-of-the-art methodologies.
We provide a nuanced analysis of the interplay between model architecture and dataset characteristics on task-specific performance.
arXiv Detail & Related papers (2024-06-01T08:01:05Z) - Genetic InfoMax: Exploring Mutual Information Maximization in
High-Dimensional Imaging Genetics Studies [50.11449968854487]
Genome-wide association studies (GWAS) are used to identify relationships between genetic variations and specific traits.
Representation learning for imaging genetics is largely under-explored due to the unique challenges posed by GWAS.
We introduce a trans-modal learning framework Genetic InfoMax (GIM) to address the specific challenges of GWAS.
arXiv Detail & Related papers (2023-09-26T03:59:21Z) - Incorporating Prior Knowledge in Deep Learning Models via Pathway
Activity Autoencoders [5.950889585409067]
We propose a novel prior-knowledge-based deep auto-encoding framework, PAAE, for RNA-seq data in cancer.
We show that, despite having access to a smaller set of features, our PAAE and PAVAE models achieve better out-of-set reconstruction results compared to common methodologies.
arXiv Detail & Related papers (2023-06-09T11:12:55Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
We propose a new framework for gene discovery entitled Un Phenotype Ensembles.
It builds a redundant yet highly expressive representation by pooling a set of phenotypes learned in an unsupervised manner.
These phenotypes are then analyzed via (GWAS), retaining only highly confident and stable associations.
arXiv Detail & Related papers (2023-01-07T18:36:44Z) - Benchmarking Machine Learning Robustness in Covid-19 Genome Sequence
Classification [109.81283748940696]
We introduce several ways to perturb SARS-CoV-2 genome sequences to mimic the error profiles of common sequencing platforms such as Illumina and PacBio.
We show that some simulation-based approaches are more robust (and accurate) than others for specific embedding methods to certain adversarial attacks to the input sequences.
arXiv Detail & Related papers (2022-07-18T19:16:56Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.