Interpreting artificial neural networks to detect genome-wide association signals for complex traits
- URL: http://arxiv.org/abs/2407.18811v2
- Date: Mon, 10 Feb 2025 22:55:58 GMT
- Title: Interpreting artificial neural networks to detect genome-wide association signals for complex traits
- Authors: Burak Yelmen, Maris Alver, Merve Nur Güler, Estonian Biobank Research Team, Flora Jay, Lili Milani,
- Abstract summary: We trained artificial neural networks to predict complex traits using both simulated and real genotype-phenotype datasets.
We detected multiple loci associated with schizophrenia.
- Score: 0.0
- License:
- Abstract: Investigating the genetic architecture of complex diseases is challenging due to the multifactorial and interactive landscape of genomic and environmental influences. Although genome-wide association studies (GWAS) have identified thousands of variants for multiple complex traits, conventional statistical approaches can be limited by simplified assumptions such as linearity and lack of epistasis in models. In this work, we trained artificial neural networks to predict complex traits using both simulated and real genotype-phenotype datasets. We extracted feature importance scores via different post hoc interpretability methods to identify potentially associated loci (PAL) for the target phenotype and devised an approach for obtaining p-values for the detected PAL. Simulations with various parameters demonstrated that associated loci can be detected with good precision using strict selection criteria. By applying our approach to the schizophrenia cohort in the Estonian Biobank, we detected multiple loci associated with this highly polygenic and heritable disorder. There was significant concordance between PAL and loci previously associated with schizophrenia and bipolar disorder, with enrichment analyses of genes within the identified PAL predominantly highlighting terms related to brain morphology and function. With advancements in model optimization and uncertainty quantification, artificial neural networks have the potential to enhance the identification of genomic loci associated with complex diseases, offering a more comprehensive approach for GWAS and serving as initial screening tools for subsequent functional studies.
Related papers
- GENERator: A Long-Context Generative Genomic Foundation Model [66.46537421135996]
We present a generative genomic foundation model featuring a context length of 98k base pairs (bp) and 1.2B parameters.
The model adheres to the central dogma of molecular biology, accurately generating protein-coding sequences.
It also shows significant promise in sequence optimization, particularly through the prompt-responsive generation of promoter sequences.
arXiv Detail & Related papers (2025-02-11T05:39:49Z) - Integrating Large Language Models for Genetic Variant Classification [12.244115429231888]
Large Language Models (LLMs) have emerged as transformative tools in genetics.
This study investigates the integration of state-of-the-art LLMs, including GPN-MSA, ESM1b, and AlphaMissense.
Our approach evaluates these integrated models using the well-annotated ProteinGym and ClinVar datasets.
arXiv Detail & Related papers (2024-11-07T13:45:56Z) - An Association Test Based on Kernel-Based Neural Networks for Complex
Genetic Association Analysis [0.8221435109014762]
We develop a kernel-based neural network model (KNN) that synergizes the strengths of linear mixed models with conventional neural networks.
MINQUE-based test to assess the joint association of genetic variants with the phenotype.
Two additional tests to evaluate and interpret linear and non-linear/non-additive genetic effects.
arXiv Detail & Related papers (2023-12-06T05:02:28Z) - Causal machine learning for single-cell genomics [94.28105176231739]
We discuss the application of machine learning techniques to single-cell genomics and their challenges.
We first present the model that underlies most of current causal approaches to single-cell biology.
We then identify open problems in the application of causal approaches to single-cell data.
arXiv Detail & Related papers (2023-10-23T13:35:24Z) - Genetic heterogeneity analysis using genetic algorithm and network
science [2.6166087473624318]
Genome-wide association studies (GWAS) can identify disease susceptible genetic variables.
Genetic variables intertwined with genetic effects often exhibit lower effect-size.
This paper introduces a novel feature selection mechanism for GWAS, named Feature Co-selection Network (FCSNet)
arXiv Detail & Related papers (2023-08-12T01:28:26Z) - Conditionally Invariant Representation Learning for Disentangling
Cellular Heterogeneity [25.488181126364186]
This paper presents a novel approach that leverages domain variability to learn representations that are conditionally invariant to unwanted variability or distractors.
We apply our method to grand biological challenges, such as data integration in single-cell genomics.
Specifically, the proposed approach helps to disentangle biological signals from data biases that are unrelated to the target task or the causal explanation of interest.
arXiv Detail & Related papers (2023-07-02T12:52:41Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
We propose a new framework for gene discovery entitled Un Phenotype Ensembles.
It builds a redundant yet highly expressive representation by pooling a set of phenotypes learned in an unsupervised manner.
These phenotypes are then analyzed via (GWAS), retaining only highly confident and stable associations.
arXiv Detail & Related papers (2023-01-07T18:36:44Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - rfPhen2Gen: A machine learning based association study of brain imaging
phenotypes to genotypes [71.1144397510333]
We learned machine learning models to predict SNPs using 56 brain imaging QTs.
SNPs within the known Alzheimer disease (AD) risk gene APOE had lowest RMSE for lasso and random forest.
Random forests identified additional SNPs that were not prioritized by the linear models but are known to be associated with brain-related disorders.
arXiv Detail & Related papers (2022-03-31T20:15:22Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.