論文の概要: MNTD: An Efficient Dynamic Community Detector Based on Nonnegative Tensor Decomposition
- arxiv url: http://arxiv.org/abs/2407.18849v1
- Date: Fri, 26 Jul 2024 16:17:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-29 12:49:41.614002
- Title: MNTD: An Efficient Dynamic Community Detector Based on Nonnegative Tensor Decomposition
- Title(参考訳): 非負テンソル分解に基づく効率的な動的コミュニティ検出器MNTD
- Authors: Hao Fang, Qu Wang, Qicong Hu, Hao Wu,
- Abstract要約: 本稿では,動的コミュニティ検出のためのモジュラリティ内非負のRESCAL分解(MNTD)モデルを提案する。
MNTDは、コミュニティ検出の精度において最先端の動的コミュニティ検出方法よりも優れている。
- 参考スコア(独自算出の注目度): 3.714657619100999
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic community detection is crucial for elucidating the temporal evolution of social structures, information dissemination, and interactive behaviors within complex networks. Nonnegative matrix factorization provides an efficient framework for identifying communities in static networks but fall short in depicting temporal variations in community affiliations. To solve this problem, this paper proposes a Modularity maximization-incorporated Nonnegative Tensor RESCAL Decomposition (MNTD) model for dynamic community detection. This method serves two primary functions: a) Nonnegative tensor RESCAL decomposition extracts latent community structures in different time slots, highlighting the persistence and transformation of communities; and b) Incorporating an initial community structure into the modularity maximization algorithm, facilitating more precise community segmentations. Comparative analysis of real-world datasets shows that the MNTD is superior to state-of-the-art dynamic community detection methods in the accuracy of community detection.
- Abstract(参考訳): 動的コミュニティ検出は、複雑なネットワーク内での社会構造の時間的進化、情報拡散、インタラクティブな行動の解明に不可欠である。
非負の行列分解は、静的ネットワーク内のコミュニティを識別する効率的なフレームワークを提供するが、コミュニティのアフィリエイトの時間的変動を表現するには不十分である。
そこで本研究では,動的コミュニティ検出のためのモジュラリティ最大化を組み込んだ非負テンソルRESCAL分解(MNTD)モデルを提案する。
この方法は2つの主要な機能を提供します。
a)非負のテンソルRESCAL分解は、異なる時間帯における潜伏するコミュニティ構造を抽出し、コミュニティの持続性と変容を強調する。
ロ モジュール性最大化アルゴリズムに初期コミュニティ構造を組み込むことにより、より正確なコミュニティセグメンテーションを容易にする。
実世界のデータセットの比較分析により、MNTDはコミュニティ検出の精度において最先端の動的コミュニティ検出方法よりも優れていることが示された。
関連論文リスト
- Learning Persistent Community Structures in Dynamic Networks via
Topological Data Analysis [2.615648035076649]
本稿では,コミュニティ間構造における時間的一貫性の整合性を考慮した新しいディープグラフクラスタリングフレームワークを提案する。
MFCは、ノード埋め込みを保存する行列分解に基づくディープグラフクラスタリングアルゴリズムである。
TopoRegは、時間間隔でコミュニティ間構造間のトポロジカルな類似性を維持するために導入された。
論文 参考訳(メタデータ) (2024-01-06T11:29:19Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
骨格に基づく行動認識のための適応的局所成分認識グラフ畳み込みネットワークを提案する。
我々の手法はグローバルな埋め込みよりも強力な表現を提供し、我々のモデルが最先端に到達するのに役立ちます。
論文 参考訳(メタデータ) (2022-09-21T02:33:07Z) - Enhance Ambiguous Community Structure via Multi-strategy Community
Related Link Prediction Method with Evolutionary Process [7.239725647907488]
我々は新しいコミュニティ属性に基づくリンク予測戦略HAPを設計する。
本稿では,あいまいなコミュニティ構造を明らかにするためのリンクを追加することで,コミュニティの強化を図ることを目的とする。
提案手法は,提案手法が他のベースライン法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-04-28T06:24:16Z) - SpatioTemporal Focus for Skeleton-based Action Recognition [66.8571926307011]
グラフ畳み込みネットワーク(GCN)は骨格に基づく行動認識において広く採用されている。
近年提案されている骨格に基づく行動認識法の性能は以下の要因によって制限されていると論じる。
近年の注目機構に着想を得て,アクション関連関係情報を取得するためのマルチグラインド・コンテキスト集中モジュール MCF を提案する。
論文 参考訳(メタデータ) (2022-03-31T02:45:24Z) - High-order Order Proximity-Incorporated, Symmetry and Graph-Regularized
Nonnegative Matrix Factorization for Community Detection [6.573829734173933]
高次近似(HOP)、対称性、グラフ規則化NMF(HSGN)モデルの提案。
HSGNベースのコミュニティ検出器は、高い精度のコミュニティ検出結果を提供するために、ベンチマークと最先端のコミュニティ検出器の両方を著しく上回っている。
論文 参考訳(メタデータ) (2022-03-08T06:45:31Z) - Transfer Learning Based Multi-Objective Evolutionary Algorithm for
Community Detection of Dynamic Complex Networks [1.693830041971135]
本稿では,伝達学習と従来の多目的進化アルゴリズムに基づく特徴伝達に基づく多目的最適化アルゴリズム(TMOGA)を提案する。
このアルゴリズムは,様々なテスト問題において,最先端の動的ネットワークコミュニティ検出アルゴリズムと比較して,より優れたクラスタリング効果が得られることを示す。
論文 参考訳(メタデータ) (2021-09-30T17:16:51Z) - Cross-modal Consensus Network for Weakly Supervised Temporal Action
Localization [74.34699679568818]
時間的行動局所化 (WS-TAL) は、ビデオレベルの分類的監督によって、ビデオ内のアクションインスタンスをローカライズすることを目的とした課題である。
この問題に対処するためのクロスモーダルコンセンサスネットワーク(CO2-Net)を提案する。
論文 参考訳(メタデータ) (2021-07-27T04:21:01Z) - Harnessing Heterogeneity: Learning from Decomposed Feedback in Bayesian
Modeling [68.69431580852535]
サブグループフィードバックを取り入れた新しいGPレグレッションを導入する。
我々の修正された回帰は、以前のアプローチと比べて、明らかにばらつきを減らし、したがってより正確な後続を減らした。
我々は2つの異なる社会問題に対してアルゴリズムを実行する。
論文 参考訳(メタデータ) (2021-07-07T03:57:22Z) - Amortized Probabilistic Detection of Communities in Graphs [39.56798207634738]
そこで我々は,アモータイズされたコミュニティ検出のためのシンプルなフレームワークを提案する。
我々はGNNの表現力と最近のアモータイズクラスタリングの手法を組み合わせる。
我々は、合成および実データセットに関するフレームワークから、いくつかのモデルを評価する。
論文 参考訳(メタデータ) (2020-10-29T16:18:48Z) - On the use of local structural properties for improving the efficiency
of hierarchical community detection methods [77.34726150561087]
本研究では,階層型コミュニティ検出の効率向上のために,局所構造ネットワーク特性をプロキシとして利用する方法について検討する。
また,ネットワークプルーニングの性能への影響を,階層的コミュニティ検出をより効率的にするための補助的手法として検証する。
論文 参考訳(メタデータ) (2020-09-15T00:16:12Z) - Community detection in sparse time-evolving graphs with a dynamical
Bethe-Hessian [47.82639003096941]
本稿では、コミュニティ構造が時間とともに進化するスパース力学グラフにおけるコミュニティ検出の問題について考察する。
クラスラベルの正の相関と時間進化の利点を生かしたBethe-Hessian行列の拡張に基づく高速スペクトルアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-03T11:44:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。