MNTD: An Efficient Dynamic Community Detector Based on Nonnegative Tensor Decomposition
- URL: http://arxiv.org/abs/2407.18849v1
- Date: Fri, 26 Jul 2024 16:17:53 GMT
- Title: MNTD: An Efficient Dynamic Community Detector Based on Nonnegative Tensor Decomposition
- Authors: Hao Fang, Qu Wang, Qicong Hu, Hao Wu,
- Abstract summary: This paper proposes a Modularity-ind Nonnegative RESCAL Decomposition (MNTD) model for dynamic community detection.
The MNTD is superior to state-of-the-art dynamic community detection methods in the accuracy of community detection.
- Score: 3.714657619100999
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic community detection is crucial for elucidating the temporal evolution of social structures, information dissemination, and interactive behaviors within complex networks. Nonnegative matrix factorization provides an efficient framework for identifying communities in static networks but fall short in depicting temporal variations in community affiliations. To solve this problem, this paper proposes a Modularity maximization-incorporated Nonnegative Tensor RESCAL Decomposition (MNTD) model for dynamic community detection. This method serves two primary functions: a) Nonnegative tensor RESCAL decomposition extracts latent community structures in different time slots, highlighting the persistence and transformation of communities; and b) Incorporating an initial community structure into the modularity maximization algorithm, facilitating more precise community segmentations. Comparative analysis of real-world datasets shows that the MNTD is superior to state-of-the-art dynamic community detection methods in the accuracy of community detection.
Related papers
- Learning Persistent Community Structures in Dynamic Networks via
Topological Data Analysis [2.615648035076649]
We propose a novel deep graph clustering framework with temporal consistency regularization on inter-community structures.
MFC is a matrix factorization-based deep graph clustering algorithm that preserves node embedding.
TopoReg is introduced to ensure the preservation of topological similarity between inter-community structures over time intervals.
arXiv Detail & Related papers (2024-01-06T11:29:19Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
We present an Adaptive Local-Component-aware Graph Convolutional Network for skeleton-based action recognition.
Our method provides a stronger representation than the global embedding and helps our model reach state-of-the-art.
arXiv Detail & Related papers (2022-09-21T02:33:07Z) - Enhance Ambiguous Community Structure via Multi-strategy Community
Related Link Prediction Method with Evolutionary Process [7.239725647907488]
We design a new community attribute based link prediction strategy HAP.
This paper aims at providing a community enhancement measure through adding links to clarify ambiguous community structures.
The experimental results on twelve real-world datasets with ground truth community indicate that the proposed link prediction method outperforms other baseline methods.
arXiv Detail & Related papers (2022-04-28T06:24:16Z) - SpatioTemporal Focus for Skeleton-based Action Recognition [66.8571926307011]
Graph convolutional networks (GCNs) are widely adopted in skeleton-based action recognition.
We argue that the performance of recent proposed skeleton-based action recognition methods is limited by the following factors.
Inspired by the recent attention mechanism, we propose a multi-grain contextual focus module, termed MCF, to capture the action associated relation information.
arXiv Detail & Related papers (2022-03-31T02:45:24Z) - High-order Order Proximity-Incorporated, Symmetry and Graph-Regularized
Nonnegative Matrix Factorization for Community Detection [6.573829734173933]
High-Order Proximity (HOP)-incorporated, Symmetry and Graph-regularized NMF (HSGN) model proposed.
HSGN-based community detector significantly outperforms both benchmark and state-of-the-art community detectors in providing highly-accurate community detection results.
arXiv Detail & Related papers (2022-03-08T06:45:31Z) - Transfer Learning Based Multi-Objective Evolutionary Algorithm for
Community Detection of Dynamic Complex Networks [1.693830041971135]
We propose a Feature Transfer Based Multi-Objective Optimization Algorithm (TMOGA) based on transfer learning and traditional multi-objective evolutionary algorithm framework.
We show that our algorithm can achieve better clustering effects compared with the state-of-the-art dynamic network community detection algorithms in diverse test problems.
arXiv Detail & Related papers (2021-09-30T17:16:51Z) - Cross-modal Consensus Network for Weakly Supervised Temporal Action
Localization [74.34699679568818]
Weakly supervised temporal action localization (WS-TAL) is a challenging task that aims to localize action instances in the given video with video-level categorical supervision.
We propose a cross-modal consensus network (CO2-Net) to tackle this problem.
arXiv Detail & Related papers (2021-07-27T04:21:01Z) - Harnessing Heterogeneity: Learning from Decomposed Feedback in Bayesian
Modeling [68.69431580852535]
We introduce a novel GP regression to incorporate the subgroup feedback.
Our modified regression has provably lower variance -- and thus a more accurate posterior -- compared to previous approaches.
We execute our algorithm on two disparate social problems.
arXiv Detail & Related papers (2021-07-07T03:57:22Z) - Amortized Probabilistic Detection of Communities in Graphs [39.56798207634738]
We propose a simple framework for amortized community detection.
We combine the expressive power of GNNs with recent methods for amortized clustering.
We evaluate several models from our framework on synthetic and real datasets.
arXiv Detail & Related papers (2020-10-29T16:18:48Z) - On the use of local structural properties for improving the efficiency
of hierarchical community detection methods [77.34726150561087]
We study how local structural network properties can be used as proxies to improve the efficiency of hierarchical community detection.
We also check the performance impact of network prunings as an ancillary tactic to make hierarchical community detection more efficient.
arXiv Detail & Related papers (2020-09-15T00:16:12Z) - Community detection in sparse time-evolving graphs with a dynamical
Bethe-Hessian [47.82639003096941]
This article considers the problem of community detection in sparse dynamical graphs in which the community structure evolves over time.
A fast spectral algorithm based on an extension of the Bethe-Hessian matrix is proposed, which benefits from the positive correlation in the class labels and in their temporal evolution.
arXiv Detail & Related papers (2020-06-03T11:44:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.