Advancing Community Detection with Graph Convolutional Neural Networks: Bridging Topological and Attributive Cohesion
- URL: http://arxiv.org/abs/2505.10197v1
- Date: Thu, 15 May 2025 11:53:33 GMT
- Title: Advancing Community Detection with Graph Convolutional Neural Networks: Bridging Topological and Attributive Cohesion
- Authors: Anjali de Silva, Gang Chen, Hui Ma, Seyed Mohammad Nekooei, Xingquan Zuo,
- Abstract summary: We propose a novel Topological and Attributive Similarity-based Community detection (TAS-Com) method.<n>TAS-Com exploits the highly effective and scalable Leiden attribute algorithm to detect community structures with global optimal modularity.<n>We show that TAS-Com can significantly outperform several state-of-the-art algorithms.
- Score: 5.009105844450518
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Community detection, a vital technology for real-world applications, uncovers cohesive node groups (communities) by leveraging both topological and attribute similarities in social networks. However, existing Graph Convolutional Networks (GCNs) trained to maximize modularity often converge to suboptimal solutions. Additionally, directly using human-labeled communities for training can undermine topological cohesiveness by grouping disconnected nodes based solely on node attributes. We address these issues by proposing a novel Topological and Attributive Similarity-based Community detection (TAS-Com) method. TAS-Com introduces a novel loss function that exploits the highly effective and scalable Leiden algorithm to detect community structures with global optimal modularity. Leiden is further utilized to refine human-labeled communities to ensure connectivity within each community, enabling TAS-Com to detect community structures with desirable trade-offs between modularity and compliance with human labels. Experimental results on multiple benchmark networks confirm that TAS-Com can significantly outperform several state-of-the-art algorithms.
Related papers
- A Local Perspective-based Model for Overlapping Community Detection [0.06206748337438322]
We propose LQ-GCN, an overlapping community detection model from a local community perspective.<n>LQ-GCN employs a Bernoulli-Poisson model to construct a community affiliation matrix and form an end-to-end detection framework.<n>LQ-GCN achieves up to a 33% improvement in Normalized Mutual Information (NMI) and a 26.3% improvement in Recall compared to baseline models.
arXiv Detail & Related papers (2025-03-27T14:43:42Z) - Cost-Effective Community-Hierarchy-Based Mutual Voting Approach for Influence Maximization in Complex Networks [54.366995393644586]
Real-world usually have high requirements on the balance between time and accuracy of influential nodes identification.
This article proposes a novel approach called Cost-Effective Community-Hierarchy-Based Mutual Voting for influence in complex networks.
The proposed approach outperforms 16 state-of-the-art techniques on the balance between time complexity and accuracy of influential nodes identification.
arXiv Detail & Related papers (2024-09-21T06:32:28Z) - Enhancing Community Detection in Networks: A Comparative Analysis of Local Metrics and Hierarchical Algorithms [49.1574468325115]
This study employs the same method to evaluate the relevance of using local similarity metrics for community detection.
The efficacy of these metrics was evaluated by applying the base algorithm to several real networks with varying community sizes.
arXiv Detail & Related papers (2024-08-17T02:17:09Z) - MNTD: An Efficient Dynamic Community Detector Based on Nonnegative Tensor Decomposition [3.714657619100999]
This paper proposes a Modularity-ind Nonnegative RESCAL Decomposition (MNTD) model for dynamic community detection.
The MNTD is superior to state-of-the-art dynamic community detection methods in the accuracy of community detection.
arXiv Detail & Related papers (2024-07-26T16:17:53Z) - A Novel Algorithm for Community Detection in Networks using Rough Sets and Consensus Clustering [0.0]
Complex networks, such as those in social, biological, and technological systems, often present challenges to the task of community detection.
Our research introduces a novel rough clustering based consensus community framework (RC-CCD) for effective structure identification of network communities.
arXiv Detail & Related papers (2024-06-18T09:01:21Z) - Semi-supervised Community Detection via Structural Similarity Metrics [0.0]
We study a semi-supervised community detection problem in which the objective is to estimate the community label of a new node.
We propose an algorithm that computes a structural similarity metric' between the new node and each of the $K$ communities.
Our findings highlight, to the best of our knowledge, the first semi-supervised community detection algorithm that offers theoretical guarantees.
arXiv Detail & Related papers (2023-06-01T19:02:50Z) - A Unified Framework for Exploratory Learning-Aided Community Detection Under Topological Uncertainty [14.903452009770715]
META-CODE is a unified framework for detecting overlapping communities in social networks.<n>It consists of three steps: 1) node-level community-affiliation embeddings based on graph neural networks (GNNs) trained by our new reconstruction loss, 2) network exploration via community-affiliation-based node queries, and 3) network inference using an edge connectivity-based Siamese neural network model from the explored network.
arXiv Detail & Related papers (2023-04-10T10:22:21Z) - QD-GCN: Query-Driven Graph Convolutional Networks for Attributed
Community Search [54.42038098426504]
QD-GCN is an end-to-end framework that unifies the community structure as well as node attributes to solve the ACS problem.
We show that QD-GCN outperforms existing attributed community search algorithms in terms of both efficiency and effectiveness.
arXiv Detail & Related papers (2021-04-08T07:52:48Z) - A multilevel clustering technique for community detection [0.0]
This study presents a novel detection method based on a scalable framework to identify related communities in a network.
We propose a multilevel clustering technique (MCT) that leverages structural and textual information to identify local communities termed microcosms.
The approach offers a better understanding and clarity toward describing how low-level communities evolve and behave on Twitter.
arXiv Detail & Related papers (2021-01-16T23:26:44Z) - Amortized Probabilistic Detection of Communities in Graphs [39.56798207634738]
We propose a simple framework for amortized community detection.
We combine the expressive power of GNNs with recent methods for amortized clustering.
We evaluate several models from our framework on synthetic and real datasets.
arXiv Detail & Related papers (2020-10-29T16:18:48Z) - On the use of local structural properties for improving the efficiency
of hierarchical community detection methods [77.34726150561087]
We study how local structural network properties can be used as proxies to improve the efficiency of hierarchical community detection.
We also check the performance impact of network prunings as an ancillary tactic to make hierarchical community detection more efficient.
arXiv Detail & Related papers (2020-09-15T00:16:12Z) - AM-GCN: Adaptive Multi-channel Graph Convolutional Networks [85.0332394224503]
We study whether Graph Convolutional Networks (GCNs) can optimally integrate node features and topological structures in a complex graph with rich information.
We propose an adaptive multi-channel graph convolutional networks for semi-supervised classification (AM-GCN)
Our experiments show that AM-GCN extracts the most correlated information from both node features and topological structures substantially.
arXiv Detail & Related papers (2020-07-05T08:16:03Z) - Detecting Communities in Heterogeneous Multi-Relational Networks:A
Message Passing based Approach [89.19237792558687]
Community is a common characteristic of networks including social networks, biological networks, computer and information networks.
We propose an efficient message passing based algorithm to simultaneously detect communities for all homogeneous networks.
arXiv Detail & Related papers (2020-04-06T17:36:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.