論文の概要: Fast optical control of a coherent hole spin in a microcavity
- arxiv url: http://arxiv.org/abs/2407.18876v1
- Date: Fri, 26 Jul 2024 17:13:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-29 12:49:41.593908
- Title: Fast optical control of a coherent hole spin in a microcavity
- Title(参考訳): マイクロキャビティにおけるコヒーレントホールスピンの高速光制御
- Authors: Mark Hogg, Nadia Antoniadis, Malwina Marczak, Giang Nguyen, Timon Baltisberger, Alisa Javadi, Ruediger Schott, Sascha Valentin, Andreas Wieck, Arne Ludwig, Richard Warburton,
- Abstract要約: コヒーレントスピン制御はまだ最先端の単一光子源と統合されていない。
ブロッホ球の任意の軸を囲むホールスピンのコヒーレント回転を実演し、最大ピパルス忠実度98.6%を達成する。
キャビティはラマン過程を強化し、1GHz以上の超高速のラビ周波数を可能にする。
- 参考スコア(独自算出の注目度): 1.7620322831838233
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A spin-photon interface is one of the key components of a quantum network. Physical platforms under investigation span the range of modern experimental physics, from ultra-cold atoms and ions to a variety of solid-state systems. Each system has its strengths and weaknesses, typically with a trade-off between spin properties and photonic properties. Currently, the best deterministic single-photon sources use a semiconductor quantum dot embedded in an optical microcavity. However, coherent spin control has not yet been integrated with a state-of-the-art single-photon source, and the magnetic noise from host nuclear spins in the semiconductor environment has placed strong limitations on the spin coherence. Here, we combine high-fidelity all-optical spin control with a quantum dot in an open microcavity, currently the most efficient single-photon source platform available. By imprinting a microwave signal onto a red-detuned optical field, a Raman process, we demonstrate coherent rotations of a hole spin around an arbitrary axis of the Bloch sphere, achieving a maximum {\pi}-pulse fidelity of 98.6%. The cavity enhances the Raman process, enabling ultra-fast Rabi frequencies above 1 GHz. We use our flexible spin control to perform optical cooling of the nuclear spins in the host material via the central hole spin, extending the hole-spin coherence time T2* from 28 ns to 535 ns. Hahn echo preserves the spin coherence on a timescale of 20 {\mu}s, and dynamical decoupling extends the coherence close to the relaxation limit. Both the spin T2* and spin rotation time are much larger than the Purcell-enhanced radiative recombination time, 50 ps, enabling many spin-photon pairs to be created before the spin loses its coherence.
- Abstract(参考訳): スピンフォトンインタフェースは量子ネットワークの重要な構成要素の1つである。
研究中の物理プラットフォームは、超低温原子やイオンから様々な固体システムまで、現代の実験物理学の範囲にまたがっている。
それぞれの系には強みと弱みがあり、通常はスピン特性とフォトニック特性のトレードオフがある。
現在、最も決定論的な単一光子源は光学マイクロキャビティに埋め込まれた半導体量子ドットを使用している。
しかし、コヒーレントスピン制御はまだ最先端の単一光子源と統合されておらず、半導体環境におけるホスト核スピンからの磁気ノイズはスピンコヒーレンスに強い制限を課している。
ここでは、高忠実度全光スピン制御と、現在利用可能な最も効率的な単一光子源プラットフォームであるオープンマイクロキャビティの量子ドットを組み合わせる。
マイクロ波信号を赤みがかった光場、ラマン過程に印加することで、ブロッホ球の任意の軸の周りの孔スピンのコヒーレントな回転を実証し、98.6%の最大密度を達成する。
キャビティはラマン過程を強化し、1GHz以上の超高速のラビ周波数を可能にする。
我々は、フレキシブルスピン制御を用いて、中心孔スピンを介してホスト材料の核スピンの光冷却を行い、ホールスピンコヒーレンス時間T2*を28 nsから535 nsまで延ばす。
ハーンエコーはスピンコヒーレンスを20 {\mu}sの時間スケールで保存し、動的デカップリングは緩和限界に近いコヒーレンスを拡張する。
スピン T2* とスピン回転時間は、Purcell による放射光再結合時間 50 ps よりもはるかに大きく、スピンがコヒーレンスを失う前に多くのスピン-光子対を生成できる。
関連論文リスト
- Microwave-based quantum control and coherence protection of tin-vacancy
spin qubits in a strain-tuned diamond membrane heterostructure [54.501132156894435]
ダイヤモンド中のスズ空孔中心(SnV)は、1.7Kで望ましい光学特性とスピン特性を持つ有望なスピン光子界面である。
我々は、これらの課題を克服する新しいプラットフォームを導入する。SnVは、一様に歪んだ薄いダイヤモンド膜の中心である。
結晶ひずみの存在は温度依存性の劣化を抑え、コヒーレンス時間を4Kで223ドルまで改善する。
論文 参考訳(メタデータ) (2023-07-21T21:40:21Z) - A quantum coherent spin in a two-dimensional material at room
temperature [2.105208778179199]
量子ネットワークとセンシングは、単一光子生成と長期間のスピンコヒーレンスを組み合わせた固体スピン光子インターフェースを必要とする。
2次元材料における単一光子放出欠陥スピンの環境条件下での量子コヒーレント制御を報告する。
論文 参考訳(メタデータ) (2023-06-22T16:37:11Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
マイクロ波または高周波駆動は、量子センサーの小型化、エネルギー効率、非侵襲性を著しく制限する。
我々は、コヒーレント量子センシングに対する純粋に光学的アプローチを示すことによって、この制限を克服する。
この結果から, 磁気学やジャイロスコープの応用において, 量子センサの小型化が期待できる。
論文 参考訳(メタデータ) (2022-12-14T08:34:11Z) - Controlling photon polarisation with a single quantum dot spin [0.0]
単一電子スピンによって誘起される巨大偏極回転の制御を実証する。
反射光子の偏光状態は、制御されたスピン誘起回転によって、ポアンカー球のほとんどで操作できる。
この制御により、ゼロまたは低磁場を含む様々な構成でのスピン光子界面の操作が可能となる。
論文 参考訳(メタデータ) (2022-12-07T16:37:59Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
量子情報の長距離伝送は、分散量子情報プロセッサの中心的な要素である。
トランスダクションへの現在のアプローチでは、電気ドメインと光ドメインの固体リンクが採用されている。
我々は、850ドルRbの低温原子をトランスデューサとして用いたミリ波光子の光子への量子制限変換を実証した。
論文 参考訳(メタデータ) (2022-07-20T18:04:26Z) - Ideal refocusing of an optically active spin qubit under strong
hyperfine interactions [0.48730499243678804]
格子整合GaAs-AlGaAs量子ドットデバイスを用いたひずみ不均一性の除去は、電子スピンコヒーレンスを約2桁長くなることを示す。
本研究は,高コヒーレントなスピン光子界面の基礎となる。
論文 参考訳(メタデータ) (2022-06-02T18:00:26Z) - The coherence of quantum dot confined electron- and hole-spin in low
external magnetic field [0.0]
スピン純度が複雑な時間振動を行うことを示すのは初めてである。
本研究は量子ドット型多光子源の設計と最適化に不可欠である。
論文 参考訳(メタデータ) (2021-08-11T12:00:30Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
固体中の核スピンは環境に弱く結合し、量子情報処理と慣性センシングの魅力的な候補となる。
我々は、原子核スピンコヒーレンス時間よりも高速で1,kHzで物理的に回転するダイヤモンド中の光核スピン偏光と原子核スピンの高速量子制御を実証した。
我々の研究は、それまで到達不可能だったNV核スピンの自由を解放し、量子制御と回転センシングに対する新しいアプローチを解き放つ。
論文 参考訳(メタデータ) (2021-07-27T03:39:36Z) - Quantum control of the tin-vacancy spin qubit in diamond [41.74498230885008]
ダイヤモンドにおけるグループIVカラーセンターは、量子ネットワークデバイスにとって有望なライトマッターインターフェースである。
負電荷のスズ空洞中心(SnV)は、大きなスピン軌道結合がフォノンの脱落を強く防いでいるため、特に興味深い。
我々は、全光刺激されたラマンドライブを介してSnVスピン量子ビットの多重軸コヒーレント制御を示す。
論文 参考訳(メタデータ) (2021-06-01T18:36:12Z) - Multidimensional cluster states using a single spin-photon interface
coupled strongly to an intrinsic nuclear register [48.7576911714538]
フォトニッククラスター状態は、測定ベースの量子コンピューティングと損失耐性量子通信のための強力なリソースである。
核レジスタに強く結合した1つの効率的なスピン光子インタフェースを用いた多次元格子クラスター状態の生成を提案する。
論文 参考訳(メタデータ) (2021-04-26T14:41:01Z) - Hybrid quantum photonics based on artificial atoms placed inside one
hole of a photonic crystal cavity [47.187609203210705]
一次元で自由なSi$_3$N$_4$ベースのフォトニック結晶キャビティ内にSiV$-$含ナノダイアモンドを含むハイブリッド量子フォトニクスを示す。
結果として生じる光子フラックスは、自由空間に比べて14倍以上増加する。
結果は、ナノダイアモンドのSiV$-$-中心を持つハイブリッド量子フォトニクスに基づいて量子ネットワークノードを実現するための重要なステップである。
論文 参考訳(メタデータ) (2020-12-21T17:22:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。