論文の概要: HRP: Human Affordances for Robotic Pre-Training
- arxiv url: http://arxiv.org/abs/2407.18911v1
- Date: Fri, 26 Jul 2024 17:59:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-29 12:39:55.397425
- Title: HRP: Human Affordances for Robotic Pre-Training
- Title(参考訳): HRP:ロボットによる事前訓練のための人的知識
- Authors: Mohan Kumar Srirama, Sudeep Dasari, Shikhar Bahl, Abhinav Gupta,
- Abstract要約: 本稿では,手,物,接触の事前学習のためのフレームワークを提案する。
実世界の5つのタスクにおいて、この空き時間事前学習がパフォーマンスを最低15%向上させることを実験的に実証した(3000以上のロボット試験を用いて)。
- 参考スコア(独自算出の注目度): 15.92416819748365
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In order to *generalize* to various tasks in the wild, robotic agents will need a suitable representation (i.e., vision network) that enables the robot to predict optimal actions given high dimensional vision inputs. However, learning such a representation requires an extreme amount of diverse training data, which is prohibitively expensive to collect on a real robot. How can we overcome this problem? Instead of collecting more robot data, this paper proposes using internet-scale, human videos to extract "affordances," both at the environment and agent level, and distill them into a pre-trained representation. We present a simple framework for pre-training representations on hand, object, and contact "affordance labels" that highlight relevant objects in images and how to interact with them. These affordances are automatically extracted from human video data (with the help of off-the-shelf computer vision modules) and used to fine-tune existing representations. Our approach can efficiently fine-tune *any* existing representation, and results in models with stronger downstream robotic performance across the board. We experimentally demonstrate (using 3000+ robot trials) that this affordance pre-training scheme boosts performance by a minimum of 15% on 5 real-world tasks, which consider three diverse robot morphologies (including a dexterous hand). Unlike prior works in the space, these representations improve performance across 3 different camera views. Quantitatively, we find that our approach leads to higher levels of generalization in out-of-distribution settings. For code, weights, and data check: https://hrp-robot.github.io
- Abstract(参考訳): 野生の様々なタスクに*を一般化するためには、ロボットが高次元の視覚入力を与えられた最適な行動を予測するのに適した表現(ビジョンネットワーク)が必要である。
しかし、そのような表現を学習するには極端に多様な訓練データが必要であるため、実際のロボットで収集するのは極めて高価である。
この問題をどうやって克服できるのか?
そこで本研究では、ロボットデータを集める代わりに、インターネットスケールの人間ビデオを用いて、環境とエージェントレベルの双方で「アクダクタンス」を抽出し、それらを事前訓練された表現に抽出する手法を提案する。
本稿では,手,オブジェクト,連絡先の表現を事前学習するためのシンプルなフレームワークについて述べる。
これらの余裕は人間のビデオデータから自動的に抽出され(市販のコンピュータビジョンモジュールの助けを借りて)、既存の表現を微調整するために使用される。
われわれのアプローチは、既存の表現を効率よく微調整でき、その結果、より強力な下流ロボット性能のモデルが得られる。
実世界の5つのタスクにおいて,3つの多様なロボット形態(器用な手を含む)を考慮し,その性能を最低15%向上させることを実験的に実証した(3000以上のロボット試験を用いて)。
この分野における以前の作業とは異なり、これらの表現は3つの異なるカメラビューのパフォーマンスを改善する。
定量的に見ると,本手法は分布外設定における一般化のレベルを高くする。
コード、重み、データチェックについては、https://hrp-robot.github.io
関連論文リスト
- Robots Pre-train Robots: Manipulation-Centric Robotic Representation from Large-Scale Robot Datasets [24.77850617214567]
本稿では,視覚的特徴と操作タスクの行動や受容といった動的情報の両方を抽出する基礎表現学習フレームワークを提案する。
具体的には、DROIDロボットデータセット上で視覚エンコーダを事前訓練し、ロボットの受容状態や動作などの動作関連データを活用する。
本研究では,視覚的観察をロボットの主観的状態-動作ダイナミクスと整合させる新しいコントラスト的損失と,事前トレーニング中の行動を予測する行動クローニング(BC)のようなアクター損失と,時間的コントラスト的損失を導入する。
論文 参考訳(メタデータ) (2024-10-29T17:58:13Z) - What Matters to You? Towards Visual Representation Alignment for Robot
Learning [81.30964736676103]
人のために運用する場合、ロボットはエンドユーザーの好みに合わせて報酬を最適化する必要がある。
本稿では、視覚的表現アライメント問題を解決するためのRAPL(Representation-Aligned Preference-based Learning)を提案する。
論文 参考訳(メタデータ) (2023-10-11T23:04:07Z) - Giving Robots a Hand: Learning Generalizable Manipulation with
Eye-in-Hand Human Video Demonstrations [66.47064743686953]
眼内カメラは、視覚に基づくロボット操作において、より優れたサンプル効率と一般化を可能にすることを約束している。
一方、人間がタスクを行うビデオは、ロボット遠隔操作の専門知識を欠いているため、収集コストがずっと安い。
本研究では,広範にラベルのない人間ビデオによるロボット模倣データセットを拡張し,眼球運動ポリシーの一般化を大幅に促進する。
論文 参考訳(メタデータ) (2023-07-12T07:04:53Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
ロボット工学のための自己教師型感覚運動器事前学習手法を提案する。
我々のモデルはRTTと呼ばれ、センサモレータトークンのシーケンスで動作するトランスフォーマーである。
感覚運動の事前学習は、ゼロからトレーニングを一貫して上回り、優れたスケーリング特性を持ち、さまざまなタスク、環境、ロボット間での移動を可能にしている。
論文 参考訳(メタデータ) (2023-06-16T17:58:10Z) - Affordances from Human Videos as a Versatile Representation for Robotics [31.248842798600606]
我々は、人間がどこでどのように対話するかを推定する視覚的余裕モデルを訓練する。
これらの行動割当の構造は、ロボットが多くの複雑なタスクを直接実行できるようにする。
私たちは、VRBと呼ばれる4つの現実世界環境、10以上のタスクと2つのロボットプラットフォームにおいて、私たちのアプローチの有効性を示します。
論文 参考訳(メタデータ) (2023-04-17T17:59:34Z) - Scaling Robot Learning with Semantically Imagined Experience [21.361979238427722]
ロボット学習の最近の進歩は、ロボットが操作タスクを実行できることを約束している。
この進歩に寄与する要因の1つは、モデルのトレーニングに使用されるロボットデータのスケールである。
本稿では,コンピュータビジョンや自然言語処理に広く用いられているテキスト・ツー・イメージ基盤モデルを利用した代替手法を提案する。
論文 参考訳(メタデータ) (2023-02-22T18:47:51Z) - Learning Reward Functions for Robotic Manipulation by Observing Humans [92.30657414416527]
我々は、ロボット操作ポリシーのタスク非依存報酬関数を学習するために、幅広い操作タスクを解く人間のラベル付きビデオを使用する。
学習された報酬は、タイムコントラストの目的を用いて学習した埋め込み空間におけるゴールまでの距離に基づいている。
論文 参考訳(メタデータ) (2022-11-16T16:26:48Z) - Learning Generalizable Robotic Reward Functions from "In-The-Wild" Human
Videos [59.58105314783289]
ドメインに依存しないビデオ識別器(DVD)は、2つのビデオが同じタスクを実行しているかどうかを判断するために識別器を訓練することによりマルチタスク報酬関数を学習する。
DVDは、人間のビデオの広いデータセットで少量のロボットデータから学習することで、一般化することができる。
DVDと視覚モデル予測制御を組み合わせることで、実際のWidowX200ロボットのロボット操作タスクを単一の人間のデモから未知の環境で解決できます。
論文 参考訳(メタデータ) (2021-03-31T05:25:05Z) - Where is my hand? Deep hand segmentation for visual self-recognition in
humanoid robots [129.46920552019247]
本稿では、画像からロボットの手を切り離すための畳み込みニューラルネットワーク(CNN)を提案する。
ヒューマノイドロボットVizzyの手のセグメンテーションのために,Mask-RCNNネットワークを微調整した。
論文 参考訳(メタデータ) (2021-02-09T10:34:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。