Advancements in Recommender Systems: A Comprehensive Analysis Based on Data, Algorithms, and Evaluation
- URL: http://arxiv.org/abs/2407.18937v1
- Date: Wed, 10 Jul 2024 14:02:21 GMT
- Title: Advancements in Recommender Systems: A Comprehensive Analysis Based on Data, Algorithms, and Evaluation
- Authors: Xin Ma, Mingyue Li, Xuguang Liu,
- Abstract summary: RSs involve five major research topics, namely algorithmic improvement, domain applications, user behavior & cognition, data processing & modeling, and social impact & ethics.
Data-related issues such as cold start, data sparsity, and data poisoning, algorithmic issues like interest drift, device-cloud collaboration, non-causal driven, and multitask conflicts, have prominent impacts.
The collected literature is mainly based on major international databases, and future research will further expand upon it.
- Score: 4.688390900531895
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Using 286 research papers collected from Web of Science, ScienceDirect, SpringerLink, arXiv, and Google Scholar databases, a systematic review methodology was adopted to review and summarize the current challenges and potential future developments in data, algorithms, and evaluation aspects of RSs. It was found that RSs involve five major research topics, namely algorithmic improvement, domain applications, user behavior & cognition, data processing & modeling, and social impact & ethics. Collaborative filtering and hybrid recommendation techniques are mainstream. The performance of RSs is jointly limited by four types of eight data issues, two types of twelve algorithmic issues, and two evaluation issues. Notably, data-related issues such as cold start, data sparsity, and data poisoning, algorithmic issues like interest drift, device-cloud collaboration, non-causal driven, and multitask conflicts, along with evaluation issues such as offline data leakage and multi-objective balancing, have prominent impacts. Fusing physiological signals for multimodal modeling, defending against data poisoning through user information behavior, evaluating generative recommendations via social experiments, fine-tuning pre-trained large models to schedule device-cloud resource, enhancing causal inference with deep reinforcement learning, training multi-task models based on probability distributions, using cross-temporal dataset partitioning, and evaluating recommendation objectives across the full lifecycle are feasible solutions to address the aforementioned prominent challenges and unlock the power and value of RSs.The collected literature is mainly based on major international databases, and future research will further expand upon it.
Related papers
- Data Augmentation in Human-Centric Vision [54.97327269866757]
This survey presents a comprehensive analysis of data augmentation techniques in human-centric vision tasks.
It delves into a wide range of research areas including person ReID, human parsing, human pose estimation, and pedestrian detection.
Our work categorizes data augmentation methods into two main types: data generation and data perturbation.
arXiv Detail & Related papers (2024-03-13T16:05:18Z) - Enhancing Human-like Multi-Modal Reasoning: A New Challenging Dataset
and Comprehensive Framework [51.44863255495668]
Multimodal reasoning is a critical component in the pursuit of artificial intelligence systems that exhibit human-like intelligence.
We present Multi-Modal Reasoning(COCO-MMR) dataset, a novel dataset that encompasses an extensive collection of open-ended questions.
We propose innovative techniques, including multi-hop cross-modal attention and sentence-level contrastive learning, to enhance the image and text encoders.
arXiv Detail & Related papers (2023-07-24T08:58:25Z) - Evaluation of Synthetic Datasets for Conversational Recommender Systems [0.0]
The absence of robust evaluation frameworks has been a long-standing problem.
Since the quality of training data is critical for downstream applications, it is important to develop metrics that evaluate the quality holistically.
In this paper, we present a framework that takes a multi-faceted approach towards evaluating datasets produced by generative models.
arXiv Detail & Related papers (2022-12-12T18:53:10Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
This survey delves into various data-driven methodological and practical advancements.
We enumerate the large number of epidemiological datasets and novel data streams that are relevant to epidemic forecasting.
We also discuss experiences and challenges that arise in real-world deployment of these forecasting systems.
arXiv Detail & Related papers (2022-07-19T16:15:11Z) - Research Trends and Applications of Data Augmentation Algorithms [77.34726150561087]
We identify the main areas of application of data augmentation algorithms, the types of algorithms used, significant research trends, their progression over time and research gaps in data augmentation literature.
We expect readers to understand the potential of data augmentation, as well as identify future research directions and open questions within data augmentation research.
arXiv Detail & Related papers (2022-07-18T11:38:32Z) - CEDAR: Communication Efficient Distributed Analysis for Regressions [9.50726756006467]
There are growing interests about distributed learning over multiple EHRs databases without sharing patient-level data.
We propose a novel communication efficient method that aggregates the local optimal estimates, by turning the problem into a missing data problem.
We provide theoretical investigation for the properties of the proposed method for statistical inference as well as differential privacy, and evaluate its performance in simulations and real data analyses.
arXiv Detail & Related papers (2022-07-01T09:53:44Z) - Predicting Seriousness of Injury in a Traffic Accident: A New Imbalanced
Dataset and Benchmark [62.997667081978825]
The paper introduces a new dataset to assess the performance of machine learning algorithms in the prediction of the seriousness of injury in a traffic accident.
The dataset is created by aggregating publicly available datasets from the UK Department for Transport.
arXiv Detail & Related papers (2022-05-20T21:15:26Z) - An Extensible Benchmark Suite for Learning to Simulate Physical Systems [60.249111272844374]
We introduce a set of benchmark problems to take a step towards unified benchmarks and evaluation protocols.
We propose four representative physical systems, as well as a collection of both widely used classical time-based and representative data-driven methods.
arXiv Detail & Related papers (2021-08-09T17:39:09Z) - Big Data Analytics Applying the Fusion Approach of Multicriteria
Decision Making with Deep Learning Algorithms [0.0]
Multicriteria based decision making is one of the key issues to solve for various issues related to the alternative effects in big data analysis.
It tends to find a solution based on the latest machine learning techniques that include algorithms like decision making and deep learning mechanism based on multicriteria.
In essence, several fields, including business, agriculture, information technology, and computer science, use deep learning and multicriteria-based decision-making problems.
arXiv Detail & Related papers (2021-02-02T05:56:03Z) - Recommender Systems Based on Generative Adversarial Networks: A
Problem-Driven Perspective [27.11589218811911]
generative adversarial networks (GANs) have garnered increased interest in many fields, owing to their strong capacity to learn complex real data distributions.
In this paper, we propose a taxonomy of these models, along with their detailed descriptions and advantages.
arXiv Detail & Related papers (2020-03-05T08:05:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.