Enhancing Human-like Multi-Modal Reasoning: A New Challenging Dataset
and Comprehensive Framework
- URL: http://arxiv.org/abs/2307.12626v2
- Date: Mon, 25 Sep 2023 15:57:35 GMT
- Title: Enhancing Human-like Multi-Modal Reasoning: A New Challenging Dataset
and Comprehensive Framework
- Authors: Jingxuan Wei, Cheng Tan, Zhangyang Gao, Linzhuang Sun, Siyuan Li,
Bihui Yu, Ruifeng Guo, Stan Z. Li
- Abstract summary: Multimodal reasoning is a critical component in the pursuit of artificial intelligence systems that exhibit human-like intelligence.
We present Multi-Modal Reasoning(COCO-MMR) dataset, a novel dataset that encompasses an extensive collection of open-ended questions.
We propose innovative techniques, including multi-hop cross-modal attention and sentence-level contrastive learning, to enhance the image and text encoders.
- Score: 51.44863255495668
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal reasoning is a critical component in the pursuit of artificial
intelligence systems that exhibit human-like intelligence, especially when
tackling complex tasks. While the chain-of-thought (CoT) technique has gained
considerable attention, the existing ScienceQA dataset, which focuses on
multimodal scientific questions and explanations from elementary and high
school textbooks, lacks a comprehensive evaluation of diverse approaches. To
address this gap, we present COCO Multi-Modal Reasoning(COCO-MMR) dataset, a
novel dataset that encompasses an extensive collection of open-ended questions,
rationales, and answers derived from the large object dataset COCO. Unlike
previous datasets that rely on multiple-choice questions, our dataset pioneers
the use of open-ended questions in the context of multimodal CoT, introducing a
more challenging problem that effectively assesses the reasoning capability of
CoT models. Through comprehensive evaluations and detailed analyses, we provide
valuable insights and propose innovative techniques, including multi-hop
cross-modal attention and sentence-level contrastive learning, to enhance the
image and text encoders. Extensive experiments demonstrate the efficacy of the
proposed dataset and techniques, offering novel perspectives for advancing
multimodal reasoning. The data and code are available at
\href{https://github.com/weijingxuan/COCO-MMR}{https://github.com/weijingxuan/COCO-MMR}.
Related papers
- TACO: Learning Multi-modal Action Models with Synthetic Chains-of-Thought-and-Action [103.5952731807559]
We present TACO, a family of multi-modal large action models designed to improve performance on complex, multi-step, and multi-modal tasks.
During inference, TACO produces chains-of-thought-and-action (CoTA), executes intermediate steps by invoking external tools such as OCR, depth estimation and calculator.
This dataset enables TACO to learn complex reasoning and action paths, surpassing existing models trained on instruction tuning data with only direct answers.
arXiv Detail & Related papers (2024-12-07T00:42:04Z) - What are the Essential Factors in Crafting Effective Long Context Multi-Hop Instruction Datasets? Insights and Best Practices [91.71951459594074]
Long language models (LLMs) with extended context windows have significantly improved tasks such as information extraction, question answering, and complex planning scenarios.
Existing methods typically utilize the Self-Instruct framework to generate instruction tuning data for better long context capability improvement.
We propose the Multi-agent Interactive Multi-hop Generation framework, incorporating a Quality Verification Agent, a Single-hop Question Generation Agent, a Multiple Question Sampling Strategy, and a Multi-hop Question Merger Agent.
Our findings show that our synthetic high-quality long-context instruction data significantly enhances model performance, even surpassing models trained on larger amounts of human
arXiv Detail & Related papers (2024-09-03T13:30:00Z) - Towards Human-Level Understanding of Complex Process Engineering Schematics: A Pedagogical, Introspective Multi-Agent Framework for Open-Domain Question Answering [0.0]
In the chemical and process industries, Process Flow Diagrams (PFDs) and Piping and Instrumentation Diagrams (P&IDs) are critical for design, construction, and maintenance.
Recent advancements in Generative AI have shown promise in understanding and interpreting process diagrams for Visual Question Answering (VQA)
We propose a secure, on-premises enterprise solution using a hierarchical, multi-agent Retrieval Augmented Generation (RAG) framework.
arXiv Detail & Related papers (2024-08-24T19:34:04Z) - SPIQA: A Dataset for Multimodal Question Answering on Scientific Papers [43.18330795060871]
SPIQA is a dataset specifically designed to interpret complex figures and tables within the context of scientific research articles.
We employ automatic and manual curation to create the dataset.
SPIQA comprises 270K questions divided into training, validation, and three different evaluation splits.
arXiv Detail & Related papers (2024-07-12T16:37:59Z) - Coding for Intelligence from the Perspective of Category [66.14012258680992]
Coding targets compressing and reconstructing data, and intelligence.
Recent trends demonstrate the potential homogeneity of these two fields.
We propose a novel problem of Coding for Intelligence from the category theory view.
arXiv Detail & Related papers (2024-07-01T07:05:44Z) - Towards Robust Evaluation: A Comprehensive Taxonomy of Datasets and Metrics for Open Domain Question Answering in the Era of Large Language Models [0.0]
Open Domain Question Answering (ODQA) within natural language processing involves building systems that answer factual questions using large-scale knowledge corpora.
High-quality datasets are used to train models on realistic scenarios.
Standardized metrics facilitate comparisons between different ODQA systems.
arXiv Detail & Related papers (2024-06-19T05:43:02Z) - Information Screening whilst Exploiting! Multimodal Relation Extraction
with Feature Denoising and Multimodal Topic Modeling [96.75821232222201]
Existing research on multimodal relation extraction (MRE) faces two co-existing challenges, internal-information over-utilization and external-information under-exploitation.
We propose a novel framework that simultaneously implements the idea of internal-information screening and external-information exploiting.
arXiv Detail & Related papers (2023-05-19T14:56:57Z) - ConvFinQA: Exploring the Chain of Numerical Reasoning in Conversational
Finance Question Answering [70.6359636116848]
We propose a new large-scale dataset, ConvFinQA, to study the chain of numerical reasoning in conversational question answering.
Our dataset poses great challenge in modeling long-range, complex numerical reasoning paths in real-world conversations.
arXiv Detail & Related papers (2022-10-07T23:48:50Z) - The Multimodal Sentiment Analysis in Car Reviews (MuSe-CaR) Dataset:
Collection, Insights and Improvements [14.707930573950787]
We present MuSe-CaR, a first of its kind multimodal dataset.
The data is publicly available as it recently served as the testing bed for the 1st Multimodal Sentiment Analysis Challenge.
arXiv Detail & Related papers (2021-01-15T10:40:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.