Promoting AI Competencies for Medical Students: A Scoping Review on Frameworks, Programs, and Tools
- URL: http://arxiv.org/abs/2407.18939v1
- Date: Wed, 10 Jul 2024 16:34:41 GMT
- Title: Promoting AI Competencies for Medical Students: A Scoping Review on Frameworks, Programs, and Tools
- Authors: Yingbo Ma, Yukyeong Song, Jeremy A. Balch, Yuanfang Ren, Divya Vellanki, Zhenhong Hu, Meghan Brennan, Suraj Kolla, Ziyuan Guan, Brooke Armfield, Tezcan Ozrazgat-Baslanti, Parisa Rashidi, Tyler J. Loftus, Azra Bihorac, Benjamin Shickel,
- Abstract summary: Despite the evolving importance of AI in healthcare, the extent to which it has been adopted into traditional and often-overloaded medical curricula is unknown.
This review provides a road map for developing practical and relevant education strategies for building an AI-competent healthcare workforce.
- Score: 1.8402287369342527
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As more clinical workflows continue to be augmented by artificial intelligence (AI), AI literacy among physicians will become a critical requirement for ensuring safe and ethical AI-enabled patient care. Despite the evolving importance of AI in healthcare, the extent to which it has been adopted into traditional and often-overloaded medical curricula is currently unknown. In a scoping review of 1,699 articles published between January 2016 and June 2024, we identified 18 studies which propose guiding frameworks, and 11 studies documenting real-world instruction, centered around the integration of AI into medical education. We found that comprehensive guidelines will require greater clinical relevance and personalization to suit medical student interests and career trajectories. Current efforts highlight discrepancies in the teaching guidelines, emphasizing AI evaluation and ethics over technical topics such as data science and coding. Additionally, we identified several challenges associated with integrating AI training into the medical education program, including a lack of guidelines to define medical students AI literacy, a perceived lack of proven clinical value, and a scarcity of qualified instructors. With this knowledge, we propose an AI literacy framework to define competencies for medical students. To prioritize relevant and personalized AI education, we categorize literacy into four dimensions: Foundational, Practical, Experimental, and Ethical, with tailored learning objectives to the pre-clinical, clinical, and clinical research stages of medical education. This review provides a road map for developing practical and relevant education strategies for building an AI-competent healthcare workforce.
Related papers
- Clinicians' Voice: Fundamental Considerations for XAI in Healthcare [0.0]
We conduct semi-structured interviews with clinicians to discuss their thoughts, hopes, and concerns.
We find that clinicians generally think positively about developing AI-based tools for clinical practice.
They have concerns about how these will fit into their workflow and how it will impact clinician-patient relations.
arXiv Detail & Related papers (2024-11-07T16:47:06Z) - Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
Large language models (LLMs) represent a transformative class of AI tools capable of revolutionizing various aspects of healthcare.
This tutorial aims to equip healthcare professionals with the tools necessary to effectively integrate LLMs into clinical practice.
arXiv Detail & Related papers (2024-10-24T15:41:56Z) - AI in radiological imaging of soft-tissue and bone tumours: a systematic review evaluating against CLAIM and FUTURE-AI guidelines [1.5332408886895255]
Soft-tissue and bone tumours (STBT) are rare, diagnostically challenging lesions with variable clinical behaviours and treatment approaches.
This systematic review provides an overview of Artificial Intelligence (AI) methods using radiological imaging for diagnosis and prognosis of these tumours.
arXiv Detail & Related papers (2024-08-22T15:31:48Z) - Towards A Unified Utilitarian Ethics Framework for Healthcare Artificial
Intelligence [0.08192907805418582]
This study attempts to identify the major ethical principles influencing the utility performance of AI at different technological levels.
Justice, privacy, bias, lack of regulations, risks, and interpretability are the most important principles to consider for ethical AI.
We propose a new utilitarian ethics-based theoretical framework for designing ethical AI for the healthcare domain.
arXiv Detail & Related papers (2023-09-26T02:10:58Z) - FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare [73.78776682247187]
Concerns have been raised about the technical, clinical, ethical and legal risks associated with medical AI.
This work describes the FUTURE-AI guideline as the first international consensus framework for guiding the development and deployment of trustworthy AI tools in healthcare.
arXiv Detail & Related papers (2023-08-11T10:49:05Z) - HEAR4Health: A blueprint for making computer audition a staple of modern
healthcare [89.8799665638295]
Recent years have seen a rapid increase in digital medicine research in an attempt to transform traditional healthcare systems.
Computer audition can be seen to be lagging behind, at least in terms of commercial interest.
We categorise the advances needed in four key pillars: Hear, corresponding to the cornerstone technologies needed to analyse auditory signals in real-life conditions; Earlier, for the advances needed in computational and data efficiency; Attentively, for accounting to individual differences and handling the longitudinal nature of medical data.
arXiv Detail & Related papers (2023-01-25T09:25:08Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - Learn2Trust: A video and streamlit-based educational programme for
AI-based medical image analysis targeted towards medical students [0.0]
The online course teaches the basics of AI for the analysis of medical image data.
The focus was on medical applications and the fundamentals of machine learning.
A survey among the participating medical students in the first run of the course was used to analyse our research hypotheses quantitatively.
arXiv Detail & Related papers (2022-08-15T16:26:13Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Review of Artificial Intelligence Techniques in Imaging Data
Acquisition, Segmentation and Diagnosis for COVID-19 [71.41929762209328]
The pandemic of coronavirus disease 2019 (COVID-19) is spreading all over the world.
Medical imaging such as X-ray and computed tomography (CT) plays an essential role in the global fight against COVID-19.
The recently emerging artificial intelligence (AI) technologies further strengthen the power of the imaging tools and help medical specialists.
arXiv Detail & Related papers (2020-04-06T15:21:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.