Autonomous Navigation of Unmanned Vehicle Through Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2407.18962v1
- Date: Thu, 18 Jul 2024 05:18:59 GMT
- Title: Autonomous Navigation of Unmanned Vehicle Through Deep Reinforcement Learning
- Authors: Letian Xu, Jiabei Liu, Haopeng Zhao, Tianyao Zheng, Tongzhou Jiang, Lipeng Liu,
- Abstract summary: The paper details the model of a Ackermann robot and the structure and application of the DDPG algorithm.
The results demonstrate that the DDPG algorithm outperforms traditional Deep Q-Network (DQN) and Double Deep Q-Network (DDQN) algorithms in path planning tasks.
- Score: 1.3725832537448668
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores the method of achieving autonomous navigation of unmanned vehicles through Deep Reinforcement Learning (DRL). The focus is on using the Deep Deterministic Policy Gradient (DDPG) algorithm to address issues in high-dimensional continuous action spaces. The paper details the model of a Ackermann robot and the structure and application of the DDPG algorithm. Experiments were conducted in a simulation environment to verify the feasibility of the improved algorithm. The results demonstrate that the DDPG algorithm outperforms traditional Deep Q-Network (DQN) and Double Deep Q-Network (DDQN) algorithms in path planning tasks.
Related papers
- Broad Critic Deep Actor Reinforcement Learning for Continuous Control [5.440090782797941]
A novel hybrid architecture for actor-critic reinforcement learning (RL) algorithms is introduced.
The proposed architecture integrates the broad learning system (BLS) with deep neural networks (DNNs)
The effectiveness of the proposed algorithm is evaluated by applying it to two classic continuous control tasks.
arXiv Detail & Related papers (2024-11-24T12:24:46Z) - Two-Timescale Model Caching and Resource Allocation for Edge-Enabled AI-Generated Content Services [55.0337199834612]
Generative AI (GenAI) has emerged as a transformative technology, enabling customized and personalized AI-generated content (AIGC) services.
These services require executing GenAI models with billions of parameters, posing significant obstacles to resource-limited wireless edge.
We introduce the formulation of joint model caching and resource allocation for AIGC services to balance a trade-off between AIGC quality and latency metrics.
arXiv Detail & Related papers (2024-11-03T07:01:13Z) - AI-Aided Kalman Filters [65.35350122917914]
The Kalman filter (KF) and its variants are among the most celebrated algorithms in signal processing.
Recent developments illustrate the possibility of fusing deep neural networks (DNNs) with classic Kalman-type filtering.
This article provides a tutorial-style overview of design approaches for incorporating AI in aiding KF-type algorithms.
arXiv Detail & Related papers (2024-10-16T06:47:53Z) - Enhanced Low-Dimensional Sensing Mapless Navigation of Terrestrial
Mobile Robots Using Double Deep Reinforcement Learning Techniques [1.191504645891765]
We present two distinct approaches aimed at enhancing mapless navigation for a ground-based mobile robot.
The research methodology primarily involves a comparative analysis between a Deep-RL strategy grounded in the foundational Deep Q-Network (DQN) algorithm, and an alternative approach based on the Double Deep Q-Network (DDQN) algorithm.
The proposed methodology is evaluated in three different real environments, revealing that Double Deep structures significantly enhance the navigation capabilities of mobile robots compared to simple Q structures.
arXiv Detail & Related papers (2023-10-20T20:47:07Z) - Deterministic and Stochastic Analysis of Deep Reinforcement Learning for
Low Dimensional Sensing-based Navigation of Mobile Robots [0.41562334038629606]
This paper presents a comparative analysis of two Deep-RL techniques - Deep Deterministic Policy Gradients (DDPG) and Soft Actor-Critic (SAC)
We aim to contribute by showing how the neural network architecture influences the learning itself, presenting quantitative results based on the time and distance of aerial mobile robots for each approach.
arXiv Detail & Related papers (2022-09-13T22:28:26Z) - Autonomous Platoon Control with Integrated Deep Reinforcement Learning
and Dynamic Programming [12.661547303266252]
It is more challenging to learn a stable and efficient car-following policy when there are multiple following vehicles in a platoon.
We adopt an integrated DRL and Dynamic Programming approach to learn autonomous platoon control policies.
We propose an algorithm, namely Finite-Horizon-DDPG with Sweeping through reduced state space.
arXiv Detail & Related papers (2022-06-15T13:45:47Z) - Computation Offloading and Resource Allocation in F-RANs: A Federated
Deep Reinforcement Learning Approach [67.06539298956854]
fog radio access network (F-RAN) is a promising technology in which the user mobile devices (MDs) can offload computation tasks to the nearby fog access points (F-APs)
arXiv Detail & Related papers (2022-06-13T02:19:20Z) - Deep Policy Dynamic Programming for Vehicle Routing Problems [89.96386273895985]
We propose Deep Policy Dynamic Programming (D PDP) to combine the strengths of learned neurals with those of dynamic programming algorithms.
D PDP prioritizes and restricts the DP state space using a policy derived from a deep neural network, which is trained to predict edges from example solutions.
We evaluate our framework on the travelling salesman problem (TSP) and the vehicle routing problem (VRP) and show that the neural policy improves the performance of (restricted) DP algorithms.
arXiv Detail & Related papers (2021-02-23T15:33:57Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
We propose a method for meta-learning reinforcement learning algorithms.
The learned algorithms are domain-agnostic and can generalize to new environments not seen during training.
We highlight two learned algorithms which obtain good generalization performance over other classical control tasks, gridworld type tasks, and Atari games.
arXiv Detail & Related papers (2021-01-08T18:55:07Z) - NOMA in UAV-aided cellular offloading: A machine learning approach [59.32570888309133]
A novel framework is proposed for cellular offloading with the aid of multiple unmanned aerial vehicles (UAVs)
Non-orthogonal multiple access (NOMA) technique is employed at each UAV to further improve the spectrum efficiency of the wireless network.
A mutual deep Q-network (MDQN) algorithm is proposed to jointly determine the optimal 3D trajectory and power allocation of UAVs.
arXiv Detail & Related papers (2020-10-18T17:38:48Z) - Obstacle Avoidance and Navigation Utilizing Reinforcement Learning with
Reward Shaping [7.132368785057316]
We propose revised Deep Deterministic Policy Gradient (DDPG) and Proximal Policy Optimization algorithms with an improved reward shaping technique.
We compare the performances between the original DDPG and PPO with the revised version of both on simulations with a real mobile robot and demonstrate that the proposed algorithms achieve better results.
arXiv Detail & Related papers (2020-03-28T18:29:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.