Ultrafast, all-optical coherence of molecular electron spins in room-temperature, aqueous solution
- URL: http://arxiv.org/abs/2407.19032v1
- Date: Fri, 26 Jul 2024 18:18:10 GMT
- Title: Ultrafast, all-optical coherence of molecular electron spins in room-temperature, aqueous solution
- Authors: Erica Sutcliffe, Nathanael P. Kazmierczak, Ryan G. Hadt,
- Abstract summary: This work redefines the meaning of room-temperature coherence by improving experimental time resolution by up to five orders of magnitude.
It unveils a new regime of electron spin coherence opening the door to new synthetic design and applications of molecular quantum bits.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The tunability and spatial precision of paramagnetic molecules makes them attractive for quantum sensing. However, usual microwave-based detection methods have poor temporal and spatial resolution, and optical methods compatible with room-temperature solutions have remained elusive. Here, we utilize pump-probe polarization spectroscopy to initialize and track electron spin coherence in a molecule. Designed to efficiently couple spins to light, aqueous $K_{2}IrCl_{6}$ enables detection of few-picosecond free induction decay at room temperature and micromolar concentrations. Viscosity is found to strongly vary decoherence lifetimes. This work redefines the meaning of room-temperature coherence by improving experimental time resolution by up to five orders of magnitude. Doing so unveils a new regime of electron spin coherence, opening the door to new synthetic design and applications of molecular quantum bits.
Related papers
- Dressed-State Spectroscopy and Magic Trapping of Microwave-Shielded NaCs Molecules [2.820929542705023]
We report on the optical polarizability of microwave-shielded ultracold NaCs molecules in an optical dipole trap.
For strong dressing fields, we find that a magic rotational transition can be engineered and demonstrate its insensitivity to laser intensity fluctuations.
arXiv Detail & Related papers (2024-06-27T16:31:22Z) - Optical control and coherent coupling of spin diffusive modes in thermal
gases [0.0]
In conditions of diffusive propagation, thermal atoms can potentially occupy various stable spatial modes in a glass cell.
We show that few of these modes can be selectively excited, manipulated, and interrogated in atomic thermal vapours using laser light.
Our results indicate that systematic engineering of the multi-mode nature of diffusive gases has great potential for improving the performance of quantum technology applications.
arXiv Detail & Related papers (2024-02-26T17:16:16Z) - Dynamics of molecular rotors in bulk superfluid helium [68.8204255655161]
We report on the experimental study of the laser-induced rotation of helium dimers inside the superfluid $4mathrmHe$ bath at variable temperature.
The observed temperature dependence suggests a non-equilibrium evolution of the quantum bath, accompanied by the emission of the wave of second sound.
arXiv Detail & Related papers (2023-04-08T01:22:19Z) - Dipolar spin-exchange and entanglement between molecules in an optical
tweezer array [0.0]
Ultracold polar molecules are promising candidate qubits for quantum computing.
Using a molecular optical tweezer array, single molecules can be moved and separately addressed for qubit operations.
We demonstrate a two-qubit gate to generate entanglement deterministically, an essential resource for all quantum information applications.
arXiv Detail & Related papers (2022-11-17T18:53:42Z) - Sensing of magnetic field effects in radical-pair reactions using a
quantum sensor [50.591267188664666]
Magnetic field effects (MFE) in certain chemical reactions have been well established in the last five decades.
We employ elaborate and realistic models of radical-pairs, considering its coupling to the local spin environment and the sensor.
For two model systems, we derive signals of MFE detectable even in the weak coupling regime between radical-pair and NV quantum sensor.
arXiv Detail & Related papers (2022-09-28T12:56:15Z) - Optical Characterization of a Single Quantum Emitter Based on Vanadium
Phthalocyanine Molecules [0.0]
Vanadium-oxide phthalocyanine (VOPc) molecules stand out as promising candidates due to their large coherence times measured in ensemble.
We show that single VOPc molecules with stable optical properties at room temperature can be isolated.
arXiv Detail & Related papers (2022-09-20T16:37:18Z) - High-resolution 'magic'-field spectroscopy on trapped polyatomic
molecules [62.997667081978825]
Rapid progress in cooling and trapping of molecules has enabled first experiments on high resolution spectroscopy of trapped diatomic molecules.
Extending this work to polyatomic molecules provides unique opportunities due to more complex geometries and additional internal degrees of freedom.
arXiv Detail & Related papers (2021-10-21T15:46:17Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Broad-band spectroscopy of a vanadyl porphyrin: a model electronuclear
spin qudit [0.0]
We show that each molecule fulfills the conditions to act as a universal 4-qubit processor or, equivalently, as a d = 16 qudit.
These findings widen the catalogue of chemically designed systems able to implement non-trivial quantum functionalities.
arXiv Detail & Related papers (2021-01-27T19:12:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.