論文の概要: To which reference class do you belong? Measuring racial fairness of reference classes with normative modeling
- arxiv url: http://arxiv.org/abs/2407.19114v1
- Date: Fri, 26 Jul 2024 22:34:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 19:40:49.397371
- Title: To which reference class do you belong? Measuring racial fairness of reference classes with normative modeling
- Title(参考訳): どの参照クラスに属しているか?規範的モデリングによる参照クラスの人種的公正度の測定
- Authors: Saige Rutherford, Thomas Wolfers, Charlotte Fraza, Nathaniel G. Harrnet, Christian F. Beckmann, Henricus G. Ruhe, Andre F. Marquand,
- Abstract要約: 構造脳画像の参照モデルにおける公平性(人種バイアス)を評価した。
3つの異なる基準クラス規範モデルからの偏差スコアを用いて自己報告レースを予測する。
我々の研究は、標準からの逸脱は、参照クラスとの人口的ミスマッチによる可能性があることを示唆している。
- 参考スコア(独自算出の注目度): 0.48182159227299687
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reference classes in healthcare establish healthy norms, such as pediatric growth charts of height and weight, and are used to chart deviations from these norms which represent potential clinical risk. How the demographics of the reference class influence clinical interpretation of deviations is unknown. Using normative modeling, a method for building reference classes, we evaluate the fairness (racial bias) in reference models of structural brain images that are widely used in psychiatry and neurology. We test whether including race in the model creates fairer models. We predict self-reported race using the deviation scores from three different reference class normative models, to better understand bias in an integrated, multivariate sense. Across all of these tasks, we uncover racial disparities that are not easily addressed with existing data or commonly used modeling techniques. Our work suggests that deviations from the norm could be due to demographic mismatch with the reference class, and assigning clinical meaning to these deviations should be done with caution. Our approach also suggests that acquiring more representative samples is an urgent research priority.
- Abstract(参考訳): 医療における基準クラスは、身長と体重の小児の成長チャートのような健康的な基準を確立し、潜在的な臨床リスクを表すこれらの基準からの逸脱をチャート化するために使用される。
基準クラスの人口層が偏差の臨床的解釈にどのように影響するかは不明である。
基準クラス構築の手法である規範モデルを用いて、精神医学や神経学で広く用いられている構造脳画像の基準モデルにおける公平性(人種バイアス)を評価する。
モデルにレースを含めることが、より公平なモデルを生み出すかどうかをテストする。
我々は、3つの異なる参照クラス規範モデルからの偏差スコアを用いて自己申告されたレースを予測し、統合された多変量感覚のバイアスをよりよく理解する。
これらすべてのタスクにまたがって、既存のデータや一般的に使用されるモデリング技術では対処できない人種的格差を明らかにします。
本研究は,標準値からの偏差は,基準値との人口的ミスマッチによる可能性があることを示唆し,これらの偏差に臨床的意義を割り当てることに注意が必要であることを示唆する。
また,本手法は,より詳細なサンプルの取得が緊急研究の優先事項であることも示唆している。
関連論文リスト
- Bias Begets Bias: The Impact of Biased Embeddings on Diffusion Models [0.0]
テキスト・トゥ・イメージ(TTI)システムは、社会的偏見に対する精査が増加している。
組込み空間をTTIモデルのバイアス源として検討する。
CLIPのような偏りのあるマルチモーダル埋め込みは、表現バランスの取れたTTIモデルに対して低いアライメントスコアをもたらす。
論文 参考訳(メタデータ) (2024-09-15T01:09:55Z) - Does Data-Efficient Generalization Exacerbate Bias in Foundation Models? [2.298227866545911]
ファンデーションモデルは、様々なドメインでラベル効率を持つ堅牢なモデルとして登場した。
事前学習中に機密属性の存在に偏った大量のラベル付きデータを使用することが、モデルの公平性に影響を与えるかどうかは不明である。
本研究は,ブラジルの多ラベル眼科学データセットを微調整する際のファンデーションモデルのバイアスについて検討する。
論文 参考訳(メタデータ) (2024-08-28T22:14:44Z) - Leveraging Diffusion Perturbations for Measuring Fairness in Computer
Vision [25.414154497482162]
拡散モデルを利用してそのようなデータセットを作成できることを実証する。
マルチクラスの職業分類タスクにおいて,複数の視覚言語モデルをベンチマークする。
非コーカサスラベルで生成された画像は、コーカサスラベルで生成された画像よりも、職業的誤分類率が高いことが判明した。
論文 参考訳(メタデータ) (2023-11-25T19:40:13Z) - It's an Alignment, Not a Trade-off: Revisiting Bias and Variance in Deep
Models [51.66015254740692]
深層学習に基づく分類モデルのアンサンブルでは, バイアスと分散がサンプルレベルで一致していることが示される。
我々はこの現象をキャリブレーションと神経崩壊という2つの理論的観点から研究する。
論文 参考訳(メタデータ) (2023-10-13T17:06:34Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
本稿では,自然言語の概念を用いた堅牢で解釈可能な医用画像分類器を構築するための新しいパラダイムを提案する。
具体的には、まず臨床概念をGPT-4から検索し、次に視覚言語モデルを用いて潜在画像の特徴を明示的な概念に変換する。
論文 参考訳(メタデータ) (2023-10-04T21:57:09Z) - Gender Biases in Automatic Evaluation Metrics for Image Captioning [87.15170977240643]
画像キャプションタスクのためのモデルに基づく評価指標において、性別バイアスの体系的研究を行う。
偏りのある世代と偏りのない世代を区別できないことを含む、これらの偏りのあるメトリクスを使用することによる負の結果を実証する。
人間の判断と相関を損なうことなく、測定バイアスを緩和する簡便で効果的な方法を提案する。
論文 参考訳(メタデータ) (2023-05-24T04:27:40Z) - Metrics for Dataset Demographic Bias: A Case Study on Facial Expression Recognition [4.336779198334903]
人口統計バイアスの最も顕著な種類は、データセットにおける人口統計群の表現における統計的不均衡である。
我々はこれらの指標を分類するための分類法を開発し、適切な指標を選択するための実践的なガイドを提供する。
この論文は、データセットバイアスを緩和し、AIモデルの公正性と正確性を改善するために、AIと関連する分野の研究者に貴重な洞察を提供する。
論文 参考訳(メタデータ) (2023-03-28T11:04:18Z) - Debiasing Vision-Language Models via Biased Prompts [79.04467131711775]
本稿では,テキスト埋め込みにおけるバイアスのある方向を投影することで,視覚言語基盤モデルを疎外する一般的な手法を提案する。
偏平投影行列を組み込んだテキストのみをデバイアスすることで、ロバストな分類器と公正な生成モデルが得られることを示す。
論文 参考訳(メタデータ) (2023-01-31T20:09:33Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD)は、ラベル付きサンプルから学習した知識を用いて、ラベルなしデータセットで新しいカテゴリを発見することを目的としている。
パラメトリック分類器の故障を調査し,高品質な監視が可能であった場合の過去の設計選択の有効性を検証し,信頼性の低い疑似ラベルを重要課題として同定する。
エントロピー正規化の利点を生かし、複数のGCDベンチマークにおける最先端性能を実現し、未知のクラス数に対して強いロバスト性を示す、単純で効果的なパラメトリック分類法を提案する。
論文 参考訳(メタデータ) (2022-11-21T18:47:11Z) - Fairness in Cardiac MR Image Analysis: An Investigation of Bias Due to
Data Imbalance in Deep Learning Based Segmentation [1.6386696247541932]
AIにおける「フェアネス」とは、人種や性別などの人口統計特性に基づいて、潜在的なバイアスのアルゴリズムを評価することを指す。
近年, 心MR領域の深層学習(DL)が注目されているが, それらの妥当性についてはまだ研究されていない。
異なる人種集団間でDiceのパフォーマンスに統計的に有意な差が認められた。
論文 参考訳(メタデータ) (2021-06-23T13:27:35Z) - Why do classifier accuracies show linear trends under distribution
shift? [58.40438263312526]
あるデータ分布上のモデルの精度は、別の分布上の精度のほぼ線形関数である。
2つのモデルが予測で一致する確率は、精度レベルだけで推測できるものよりも高いと仮定します。
分布シフトの大きさが大きければ, 2 つの分布のモデルを評価する場合, 線形傾向が生じなければならない。
論文 参考訳(メタデータ) (2020-12-31T07:24:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。