Channel Boosted CNN-Transformer-based Multi-Level and Multi-Scale Nuclei Segmentation
- URL: http://arxiv.org/abs/2407.19186v1
- Date: Sat, 27 Jul 2024 05:54:05 GMT
- Title: Channel Boosted CNN-Transformer-based Multi-Level and Multi-Scale Nuclei Segmentation
- Authors: Zunaira Rauf, Abdul Rehman Khan, Asifullah Khan,
- Abstract summary: nuclei segmentation is an essential foundation for various applications in computational pathology, including cancer diagnosis and treatment planning.
achieving accurate segmentation remains challenging due to factors like clustered nuclei, high intra-class variability in size and shape, resemblance to other cells, and color or contrast variations between nuclei and background.
We propose two CNN-Transformer architectures that leverage the strengths of both CNNs and Transformers to effectively learn nuclei boundaries in multi-organ histology images.
- Score: 0.40964539027092917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate nuclei segmentation is an essential foundation for various applications in computational pathology, including cancer diagnosis and treatment planning. Even slight variations in nuclei representations can significantly impact these downstream tasks. However, achieving accurate segmentation remains challenging due to factors like clustered nuclei, high intra-class variability in size and shape, resemblance to other cells, and color or contrast variations between nuclei and background. Despite the extensive utilization of Convolutional Neural Networks (CNNs) in medical image segmentation, they may have trouble capturing long-range dependencies crucial for accurate nuclei delineation. Transformers address this limitation but might miss essential low-level features. To overcome these limitations, we utilized CNN-Transformer-based techniques for nuclei segmentation in H&E stained histology images. In this work, we proposed two CNN-Transformer architectures, Nuclei Hybrid Vision Transformer (NucleiHVT) and Channel Boosted Nuclei Hybrid Vision Transformer (CB-NucleiHVT), that leverage the strengths of both CNNs and Transformers to effectively learn nuclei boundaries in multi-organ histology images. The first architecture, NucleiHVT is inspired by the UNet architecture and incorporates the dual attention mechanism to capture both multi-level and multi-scale context effectively. The CB-NucleiHVT network, on the other hand, utilizes the concept of channel boosting to learn diverse feature spaces, enhancing the model's ability to distinguish subtle variations in nuclei characteristics. Detailed evaluation of two medical image segmentation datasets shows that the proposed architectures outperform existing CNN-based, Transformer-based, and hybrid methods. The proposed networks demonstrated effective results both in terms of quantitative metrics, and qualitative visual assessment.
Related papers
- TBConvL-Net: A Hybrid Deep Learning Architecture for Robust Medical Image Segmentation [6.013821375459473]
We introduce a novel deep learning architecture for medical image segmentation.
Our proposed model shows consistent improvement over the state of the art on ten publicly available datasets.
arXiv Detail & Related papers (2024-09-05T09:14:03Z) - CNN-Transformer Rectified Collaborative Learning for Medical Image Segmentation [60.08541107831459]
This paper proposes a CNN-Transformer rectified collaborative learning framework to learn stronger CNN-based and Transformer-based models for medical image segmentation.
Specifically, we propose a rectified logit-wise collaborative learning (RLCL) strategy which introduces the ground truth to adaptively select and rectify the wrong regions in student soft labels.
We also propose a class-aware feature-wise collaborative learning (CFCL) strategy to achieve effective knowledge transfer between CNN-based and Transformer-based models in the feature space.
arXiv Detail & Related papers (2024-08-25T01:27:35Z) - Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
We propose a hybrid network via the combination of convolution neural network (CNN) and transformer layers.
The experimental results on private and public DCE-MRI datasets demonstrate that the proposed hybrid network superior performance than the state-of-the-art methods.
arXiv Detail & Related papers (2024-08-11T15:46:00Z) - Transformer-CNN Fused Architecture for Enhanced Skin Lesion Segmentation [0.0]
convolutional neural networks (CNNs) have greatly advanced medical image segmentation.
CNNs have been found to struggle with learning long-range dependencies and capturing global context.
We propose a hybrid architecture that combines the ability of transformers to capture global dependencies with the ability of CNNs to capture low-level spatial details.
arXiv Detail & Related papers (2024-01-10T18:36:14Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
Capturing global contextual information plays a critical role in breast ultrasound (BUS) image classification.
Vision Transformers have an improved capability of capturing global contextual information but may distort the local image patterns due to the tokenization operations.
In this study, we proposed a hybrid multitask deep neural network called Hybrid-MT-ESTAN, designed to perform BUS tumor classification and segmentation.
arXiv Detail & Related papers (2023-08-04T01:19:32Z) - MaxViT-UNet: Multi-Axis Attention for Medical Image Segmentation [0.46040036610482665]
MaxViT-UNet is a hybrid vision transformer (CNN-Transformer) for medical image segmentation.
The proposed Hybrid Decoder is designed to harness the power of both the convolution and self-attention mechanisms at each decoding stage.
The inclusion of multi-axis self-attention, within each decoder stage, significantly enhances the discriminating capacity between the object and background regions.
arXiv Detail & Related papers (2023-05-15T07:23:54Z) - Structure Embedded Nucleus Classification for Histopathology Images [51.02953253067348]
Most neural network based methods are affected by the local receptive field of convolutions.
We propose a novel polygon-structure feature learning mechanism that transforms a nucleus contour into a sequence of points sampled in order.
Next, we convert a histopathology image into a graph structure with nuclei as nodes, and build a graph neural network to embed the spatial distribution of nuclei into their representations.
arXiv Detail & Related papers (2023-02-22T14:52:06Z) - Data-Efficient Vision Transformers for Multi-Label Disease
Classification on Chest Radiographs [55.78588835407174]
Vision Transformers (ViTs) have not been applied to this task despite their high classification performance on generic images.
ViTs do not rely on convolutions but on patch-based self-attention and in contrast to CNNs, no prior knowledge of local connectivity is present.
Our results show that while the performance between ViTs and CNNs is on par with a small benefit for ViTs, DeiTs outperform the former if a reasonably large data set is available for training.
arXiv Detail & Related papers (2022-08-17T09:07:45Z) - Scopeformer: n-CNN-ViT Hybrid Model for Intracranial Hemorrhage
Classification [0.0]
We propose a feature generator composed of an ensemble of convolutional neuralnetworks (CNNs) to improve the Vision Transformer (ViT) models.
We show that by gradually stacking several feature maps extracted using multiple Xception CNNs, we can develop a feature-rich input for the ViT model.
arXiv Detail & Related papers (2021-07-07T20:20:24Z) - Learning Interpretable Microscopic Features of Tumor by Multi-task
Adversarial CNNs To Improve Generalization [1.7371375427784381]
Existing CNN models act as black boxes, not ensuring to the physicians that important diagnostic features are used by the model.
Here we show that our architecture, by learning end-to-end an uncertainty-based weighting combination of multi-task and adversarial losses, is encouraged to focus on pathology features.
Our results on breast lymph node tissue show significantly improved generalization in the detection of tumorous tissue, with best average AUC 0.89 (0.01) against the baseline AUC 0.86 (0.005)
arXiv Detail & Related papers (2020-08-04T12:10:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.