論文の概要: Can Modifying Data Address Graph Domain Adaptation?
- arxiv url: http://arxiv.org/abs/2407.19311v1
- Date: Sat, 27 Jul 2024 17:56:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 18:51:52.292790
- Title: Can Modifying Data Address Graph Domain Adaptation?
- Title(参考訳): データアドレスグラフドメイン適応の修正は可能か?
- Authors: Renhong Huang, Jiarong Xu, Xin Jiang, Ruichuan An, Yang Yang,
- Abstract要約: Unsupervised Graph Domain Adaptation (UGDA)は、ラベル付きソースグラフからラベル付きターゲットグラフへの知識伝達を容易にすることを目的としている。
小さいが転送可能なグラフを生成する新しいUGDA法であるGraphAlignを提案する。
古典的な経験的リスク最小化(ERM)を備えた新しいグラフ上で、GNNのみをトレーニングすることにより、GraphAlignは、ターゲットグラフ上での例外的なパフォーマンスを実現する。
- 参考スコア(独自算出の注目度): 20.343259091425708
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) have demonstrated remarkable success in numerous graph analytical tasks. Yet, their effectiveness is often compromised in real-world scenarios due to distribution shifts, limiting their capacity for knowledge transfer across changing environments or domains. Recently, Unsupervised Graph Domain Adaptation (UGDA) has been introduced to resolve this issue. UGDA aims to facilitate knowledge transfer from a labeled source graph to an unlabeled target graph. Current UGDA efforts primarily focus on model-centric methods, such as employing domain invariant learning strategies and designing model architectures. However, our critical examination reveals the limitations inherent to these model-centric methods, while a data-centric method allowed to modify the source graph provably demonstrates considerable potential. This insight motivates us to explore UGDA from a data-centric perspective. By revisiting the theoretical generalization bound for UGDA, we identify two data-centric principles for UGDA: alignment principle and rescaling principle. Guided by these principles, we propose GraphAlign, a novel UGDA method that generates a small yet transferable graph. By exclusively training a GNN on this new graph with classic Empirical Risk Minimization (ERM), GraphAlign attains exceptional performance on the target graph. Extensive experiments under various transfer scenarios demonstrate the GraphAlign outperforms the best baselines by an average of 2.16%, training on the generated graph as small as 0.25~1% of the original training graph.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は多くのグラフ解析タスクにおいて顕著な成功を収めている。
しかし、それらの効果は、分散シフトによって現実のシナリオでしばしば損なわれ、環境やドメインの変化にまたがる知識伝達の能力を制限する。
最近、この問題を解決するためにUnsupervised Graph Domain Adaptation (UGDA)が導入されている。
UGDAはラベル付きソースグラフからラベルなしターゲットグラフへの知識伝達を容易にすることを目的としている。
現在のUGDAの取り組みは、ドメイン不変学習戦略の採用やモデルアーキテクチャの設計など、主にモデル中心の手法に焦点を当てている。
しかし,本研究は,これらのモデル中心の手法に固有の限界を明らかにするとともに,データ中心の手法でソースグラフの修正が可能であり,有意な可能性を証明している。
この洞察は、データ中心の観点からUGDAを探求する動機となります。
UGDAの理論的一般化を再考することにより、UGDAの2つのデータ中心原理、すなわちアライメント原理と再スケーリング原理を同定する。
これらの原理により、我々は、小さいが転送可能なグラフを生成する新しいUGDA法であるGraphAlignを提案する。
古典的な経験的リスク最小化(ERM)を備えた新しいグラフ上で、GNNのみをトレーニングすることにより、GraphAlignは、ターゲットグラフ上での例外的なパフォーマンスを実現する。
様々な転送シナリオ下での大規模な実験では、GraphAlignが平均2.16%のベースラインを上回り、生成されたグラフのトレーニングはオリジナルのトレーニンググラフの0.25~1%と小さい。
関連論文リスト
- GALA: Graph Diffusion-based Alignment with Jigsaw for Source-free Domain Adaptation [13.317620250521124]
ソースコードのないドメイン適応は、現実世界で多くのアプリケーションを含むため、重要な機械学習トピックである。
最近のグラフニューラルネットワーク(GNN)アプローチは、ドメインシフトとラベルの不足により、パフォーマンスが著しく低下する可能性がある。
本稿では, ソースフリーなグラフドメイン適応に適した Jigsaw (GALA) を用いたグラフ拡散に基づくアライメント法を提案する。
論文 参考訳(メタデータ) (2024-10-22T01:32:46Z) - Revisiting, Benchmarking and Understanding Unsupervised Graph Domain Adaptation [31.106636947179005]
教師なしグラフドメイン適応(Unsupervised Graph Domain Adaptation)は、ラベル豊富なソースグラフからラベルなしターゲットグラフへの知識の転送を含む。
GDABenchと呼ばれる教師なしグラフ領域適応のための最初の包括的なベンチマークを示す。
我々は、現在のUGDAモデルの性能がデータセットや適応シナリオによって大きく異なることを観察する。
論文 参考訳(メタデータ) (2024-07-09T06:44:09Z) - Rethinking Propagation for Unsupervised Graph Domain Adaptation [17.443218657417454]
Unlabelled Graph Domain Adaptation (UGDA)は、ラベル付きソースグラフから教師なしターゲットグラフに知識を転送することを目的としている。
本稿では,グラフ領域適応のためのA2GNNというシンプルな手法を提案する。
論文 参考訳(メタデータ) (2024-02-08T13:24:57Z) - SimTeG: A Frustratingly Simple Approach Improves Textual Graph Learning [131.04781590452308]
テキストグラフ学習におけるフラストレーションに富んだアプローチであるSimTeGを提案する。
まず、下流タスクで予め訓練されたLM上で、教師付きパラメータ効率の微調整(PEFT)を行う。
次に、微調整されたLMの最後の隠れ状態を用いてノード埋め込みを生成する。
論文 参考訳(メタデータ) (2023-08-03T07:00:04Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
本稿では,グラフ間のGNNの事前学習プロセスの監視を目的とした,MentorGNNというエンドツーエンドモデルを提案する。
我々は、事前学習したGNNの一般化誤差に自然かつ解釈可能な上限を導出することにより、関係データ(グラフ)に対するドメイン適応の問題に新たな光を当てた。
論文 参考訳(メタデータ) (2022-08-21T15:12:08Z) - SizeShiftReg: a Regularization Method for Improving Size-Generalization
in Graph Neural Networks [5.008597638379227]
グラフニューラルネットワーク(GNN)は,グラフ分類のデファクトモデルとなっている。
テストデータへのアクセスを必要とせずに,任意のGNNに適用可能な正規化戦略を提案する。
我々の正規化は、粗い手法を用いてトレーニンググラフのサイズの変化をシミュレートする考え方に基づいている。
論文 参考訳(メタデータ) (2022-07-16T09:50:45Z) - Similarity-aware Positive Instance Sampling for Graph Contrastive
Pre-training [82.68805025636165]
トレーニングセット内の既存グラフから直接正のグラフインスタンスを選択することを提案する。
私たちの選択は、特定のドメイン固有のペアワイズ類似度測定に基づいています。
さらに,ノードを動的にマスキングしてグラフ上に均等に分配する適応ノードレベルの事前学習手法を開発した。
論文 参考訳(メタデータ) (2022-06-23T20:12:51Z) - Source Free Unsupervised Graph Domain Adaptation [60.901775859601685]
Unsupervised Graph Domain Adaptation (UGDA) はノード分類のラベル付けコストを削減するための実用的価値を示している。
既存のUGDAメソッドの多くは、ソースドメインのラベル付きグラフに大きく依存している。
現実のシナリオでは、ソースグラフはプライバシーの問題のためにアクセスできない。
我々は、Source Free Unsupervised Graph Domain Adaptation (SFUGDA) という新しいシナリオを提案する。
論文 参考訳(メタデータ) (2021-12-02T03:18:18Z) - Training Robust Graph Neural Networks with Topology Adaptive Edge
Dropping [116.26579152942162]
グラフニューラルネットワーク(GNN)は、グラフ構造情報を利用してネットワークデータから表現をモデル化する処理アーキテクチャである。
彼らの成功にもかかわらず、GNNは限られた訓練データから得られる準最適一般化性能に悩まされている。
本稿では、一般化性能を改善し、堅牢なGNNモデルを学習するためのトポロジ適応エッジドロップ法を提案する。
論文 参考訳(メタデータ) (2021-06-05T13:20:36Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
GNNを反転させてトレーニンググラフのプライベートグラフデータを抽出することを目的とした textbfGraph textbfModel textbfInversion attack (GraphMI) を提案する。
具体的には,グラフ特徴の空間性と滑らかさを保ちながら,グラフエッジの離散性に対処する勾配モジュールを提案する。
エッジ推論のためのグラフトポロジ、ノード属性、ターゲットモデルパラメータを効率的に活用するグラフ自動エンコーダモジュールを設計する。
論文 参考訳(メタデータ) (2021-06-05T07:07:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。