論文の概要: Semantic Communication Enhanced by Knowledge Graph Representation Learning
- arxiv url: http://arxiv.org/abs/2407.19338v1
- Date: Sat, 27 Jul 2024 20:57:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 18:41:57.648507
- Title: Semantic Communication Enhanced by Knowledge Graph Representation Learning
- Title(参考訳): 知識グラフ表現学習による意味コミュニケーション
- Authors: Nour Hello, Paolo Di Lorenzo, Emilio Calvanese Strinati,
- Abstract要約: 本稿では,意味的コミュニケーションの新たなパラダイムにおいて,グラフに抽出された意味的知識の表現と処理の利点について検討する。
本稿では,無線チャネルを通じてノード埋め込みと等価な意味記号を送信し,受信側で完全な知識グラフを推測する。
- 参考スコア(独自算出の注目度): 11.68356846628016
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates the advantages of representing and processing semantic knowledge extracted into graphs within the emerging paradigm of semantic communications. The proposed approach leverages semantic and pragmatic aspects, incorporating recent advances on large language models (LLMs) to achieve compact representations of knowledge to be processed and exchanged between intelligent agents. This is accomplished by using the cascade of LLMs and graph neural networks (GNNs) as semantic encoders, where information to be shared is selected to be meaningful at the receiver. The embedding vectors produced by the proposed semantic encoder represent information in the form of triplets: nodes (semantic concepts entities), edges(relations between concepts), nodes. Thus, semantic information is associated with the representation of relationships among elements in the space of semantic concept abstractions. In this paper, we investigate the potential of achieving high compression rates in communication by incorporating relations that link elements within graph embeddings. We propose sending semantic symbols solely equivalent to node embeddings through the wireless channel and inferring the complete knowledge graph at the receiver. Numerical simulations illustrate the effectiveness of leveraging knowledge graphs to semantically compress and transmit information.
- Abstract(参考訳): 本稿では,意味的コミュニケーションの新たなパラダイムにおいて,グラフに抽出された意味的知識の表現と処理の利点について検討する。
提案手法は,知能エージェント間で処理および交換を行う知識のコンパクト表現を実現するために,大規模言語モデル(LLM)の最近の進歩を取り入れた意味的・実践的側面を活用する。
これは、LLMとグラフニューラルネットワーク(GNN)のカスケードをセマンティックエンコーダとして使用することで実現される。
提案したセマンティックエンコーダによって生成された埋め込みベクトルは、三重項の形式で情報を表す:ノード(意味概念エンティティ)、エッジ(概念間の関係)、ノード。
したがって、意味情報は意味概念抽象の空間における要素間の関係の表現と関連づけられる。
本稿では,グラフ埋め込みに要素をリンクする関係を組み込むことにより,通信における高い圧縮率を実現する可能性を検討する。
本稿では,無線チャネルを通じてノード埋め込みと等価な意味記号を送信し,受信側で完全な知識グラフを推測する。
数値シミュレーションは知識グラフを利用して情報を意味的に圧縮し伝達する効果を示す。
関連論文リスト
- Enhancing Graph Contrastive Learning with Reliable and Informative Augmentation for Recommendation [84.45144851024257]
CoGCLは、離散コードを通じてより強力な協調情報でコントラスト的なビューを構築することで、グラフのコントラスト学習を強化することを目的としている。
ユーザとアイテムの表現を離散コードに定量化するために,マルチレベルベクトル量化器をエンドツーエンドで導入する。
近傍構造に対しては,離散符号を仮想隣人として扱うことにより,仮想隣人拡張を提案する。
意味的関連性については、共有された離散コードと相互作用ターゲットに基づいて類似のユーザ/イテムを識別し、意味的関連性のあるビューを生成する。
論文 参考訳(メタデータ) (2024-09-09T14:04:17Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - Reasoning over the Air: A Reasoning-based Implicit Semantic-Aware
Communication Framework [124.6509194665514]
ソースユーザと宛先ユーザの間で暗黙的な意味を表現し,伝達し,解釈するために,新しい暗黙的意味コミュニケーション(iSAC)アーキテクチャを提案する。
プロジェクションベースセマンティックエンコーダは, 明示的セマンティックスの高次元グラフィカル表現を低次元セマンティックコンステレーション空間に変換し, 効率的な物理チャネル伝送を実現する。
ソースユーザの暗黙的意味推論過程を学習し、模倣できるようにするため、G-RMLと呼ばれる生成逆模倣学習ベースのソリューションが提案されている。
論文 参考訳(メタデータ) (2023-06-20T01:32:27Z) - CADGE: Context-Aware Dialogue Generation Enhanced with Graph-Structured Knowledge Aggregation [25.56539617837482]
コンテキスト対応グラフアテンションモデル(Context-aware GAT)を提案する。
これは、コンテキスト強化された知識集約機構を通じて、関連する知識グラフからグローバルな特徴を同化する。
実験により,本フレームワークは従来のGNNベース言語モデルよりも性能が優れていることが示された。
論文 参考訳(メタデータ) (2023-05-10T16:31:35Z) - Less Data, More Knowledge: Building Next Generation Semantic
Communication Networks [180.82142885410238]
本稿では、スケーラブルなエンドツーエンドセマンティック通信ネットワークの最初の厳密なビジョンを示す。
まず、セマンティック・コミュニケーション・ネットワークの設計は、データ駆動型ネットワークから知識駆動型ネットワークへどのように移行する必要があるかについて議論する。
意味表現と言語を用いることで、従来の送信機と受信機が教師と見習いになることを示す。
論文 参考訳(メタデータ) (2022-11-25T19:03:25Z) - Imitation Learning-based Implicit Semantic-aware Communication Networks:
Multi-layer Representation and Collaborative Reasoning [68.63380306259742]
有望な可能性にもかかわらず、セマンティック通信とセマンティック・アウェア・ネットワーキングはまだ初期段階にある。
本稿では,CDCとエッジサーバの複数層を連携させる,推論に基づく暗黙的セマンティック・アウェア通信ネットワークアーキテクチャを提案する。
暗黙的セマンティクスの階層構造と個人ユーザのパーソナライズされた推論嗜好を考慮に入れたセマンティクス情報の多層表現を提案する。
論文 参考訳(メタデータ) (2022-10-28T13:26:08Z) - EXK-SC: A Semantic Communication Model Based on Information Framework
Expansion and Knowledge Collision [12.584442859898282]
この研究は、意味情報フレームワークにおける意味拡張と知識の衝突を論じる最初のものである。
セマンティック展開と伝達情報率の関係など,いくつかの重要な理論的結果が提示される。
我々はこのような意味情報フレームワークが意味コミュニケーションの新しいパラダイムを提供すると考えている。
論文 参考訳(メタデータ) (2022-10-24T09:00:14Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
グラフ畳み込みネットワークにおける既存の表現学習手法は主に、各ノードの近傍を知覚全体として記述することで設計される。
本稿では,グラフの潜在意味パスを学習することで暗黙的な意味を探索する意味グラフ畳み込みネットワーク(sgcn)を提案する。
論文 参考訳(メタデータ) (2021-01-16T16:18:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。