X-Fake: Juggling Utility Evaluation and Explanation of Simulated SAR Images
- URL: http://arxiv.org/abs/2407.19436v1
- Date: Sun, 28 Jul 2024 09:27:53 GMT
- Title: X-Fake: Juggling Utility Evaluation and Explanation of Simulated SAR Images
- Authors: Zhongling Huang, Yihan Zhuang, Zipei Zhong, Feng Xu, Gong Cheng, Junwei Han,
- Abstract summary: The distribution inconsistency between real and simulated data is the main obstacle that influences the utility of simulated SAR images.
We propose a novel trustworthy utility evaluation framework with a counterfactual explanation for simulated SAR images for the first time, denoted as X-Fake.
The proposed framework is validated on four simulated SAR image datasets obtained from electromagnetic models and generative artificial intelligence approaches.
- Score: 49.546627070454456
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: SAR image simulation has attracted much attention due to its great potential to supplement the scarce training data for deep learning algorithms. Consequently, evaluating the quality of the simulated SAR image is crucial for practical applications. The current literature primarily uses image quality assessment techniques for evaluation that rely on human observers' perceptions. However, because of the unique imaging mechanism of SAR, these techniques may produce evaluation results that are not entirely valid. The distribution inconsistency between real and simulated data is the main obstacle that influences the utility of simulated SAR images. To this end, we propose a novel trustworthy utility evaluation framework with a counterfactual explanation for simulated SAR images for the first time, denoted as X-Fake. It unifies a probabilistic evaluator and a causal explainer to achieve a trustworthy utility assessment. We construct the evaluator using a probabilistic Bayesian deep model to learn the posterior distribution, conditioned on real data. Quantitatively, the predicted uncertainty of simulated data can reflect the distribution discrepancy. We build the causal explainer with an introspective variational auto-encoder to generate high-resolution counterfactuals. The latent code of IntroVAE is finally optimized with evaluation indicators and prior information to generate the counterfactual explanation, thus revealing the inauthentic details of simulated data explicitly. The proposed framework is validated on four simulated SAR image datasets obtained from electromagnetic models and generative artificial intelligence approaches. The results demonstrate the proposed X-Fake framework outperforms other IQA methods in terms of utility. Furthermore, the results illustrate that the generated counterfactual explanations are trustworthy, and can further improve the data utility in applications.
Related papers
- Are NeRFs ready for autonomous driving? Towards closing the real-to-simulation gap [6.393953433174051]
We propose a novel perspective for addressing the real-to-simulated data gap.
We conduct the first large-scale investigation into the real-to-simulated data gap in an autonomous driving setting.
Our results show notable improvements in model robustness to simulated data, even improving real-world performance in some cases.
arXiv Detail & Related papers (2024-03-24T11:09:41Z) - On quantifying and improving realism of images generated with diffusion [50.37578424163951]
We propose a metric, called Image Realism Score (IRS), computed from five statistical measures of a given image.
IRS is easily usable as a measure to classify a given image as real or fake.
We experimentally establish the model- and data-agnostic nature of the proposed IRS by successfully detecting fake images generated by Stable Diffusion Model (SDM), Dalle2, Midjourney and BigGAN.
Our efforts have also led to Gen-100 dataset, which provides 1,000 samples for 100 classes generated by four high-quality models.
arXiv Detail & Related papers (2023-09-26T08:32:55Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
The presence of speckle degrades the image quality and adversely affects the performance of SAR image understanding applications.
We introduce SAR-DDPM, a denoising diffusion probabilistic model for SAR despeckling.
The proposed method achieves significant improvements in both quantitative and qualitative results over the state-of-the-art despeckling methods.
arXiv Detail & Related papers (2022-06-09T14:00:26Z) - MDN-VO: Estimating Visual Odometry with Confidence [34.8860186009308]
Visual Odometry (VO) is used in many applications including robotics and autonomous systems.
We propose a deep learning-based VO model to estimate 6-DoF poses, as well as a confidence model for these estimates.
Our experiments show that the proposed model exceeds state-of-the-art performance in addition to detecting failure cases.
arXiv Detail & Related papers (2021-12-23T19:26:04Z) - Learning Transformer Features for Image Quality Assessment [53.51379676690971]
We propose a unified IQA framework that utilizes CNN backbone and transformer encoder to extract features.
The proposed framework is compatible with both FR and NR modes and allows for a joint training scheme.
arXiv Detail & Related papers (2021-12-01T13:23:00Z) - Conditional Variational Autoencoder for Learned Image Reconstruction [5.487951901731039]
We develop a novel framework that approximates the posterior distribution of the unknown image at each query observation.
It handles implicit noise models and priors, it incorporates the data formation process (i.e., the forward operator), and the learned reconstructive properties are transferable between different datasets.
arXiv Detail & Related papers (2021-10-22T10:02:48Z) - Uncertainty-aware GAN with Adaptive Loss for Robust MRI Image
Enhancement [3.222802562733787]
Conditional generative adversarial networks (GANs) have shown improved performance in learning photo-realistic image-to-image mappings.
This paper proposes a GAN-based framework that (i)models an adaptive loss function for robustness to OOD-noisy data and (ii)estimates the per-voxel uncertainty in the predictions.
We demonstrate our method on two key applications in medical imaging: (i)undersampled magnetic resonance imaging (MRI) reconstruction (ii)MRI modality propagation.
arXiv Detail & Related papers (2021-10-07T11:29:03Z) - PDC-Net+: Enhanced Probabilistic Dense Correspondence Network [161.76275845530964]
Enhanced Probabilistic Dense Correspondence Network, PDC-Net+, capable of estimating accurate dense correspondences.
We develop an architecture and an enhanced training strategy tailored for robust and generalizable uncertainty prediction.
Our approach obtains state-of-the-art results on multiple challenging geometric matching and optical flow datasets.
arXiv Detail & Related papers (2021-09-28T17:56:41Z) - Learning Accurate Dense Correspondences and When to Trust Them [161.76275845530964]
We aim to estimate a dense flow field relating two images, coupled with a robust pixel-wise confidence map.
We develop a flexible probabilistic approach that jointly learns the flow prediction and its uncertainty.
Our approach obtains state-of-the-art results on challenging geometric matching and optical flow datasets.
arXiv Detail & Related papers (2021-01-05T18:54:11Z) - Speckle2Void: Deep Self-Supervised SAR Despeckling with Blind-Spot
Convolutional Neural Networks [30.410981386006394]
despeckling is a crucial preliminary step in scene analysis algorithms.
Recent success of deep learning envisions a new generation of despeckling techniques.
We propose a self-supervised Bayesian despeckling method.
arXiv Detail & Related papers (2020-07-04T11:38:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.