Perm: A Parametric Representation for Multi-Style 3D Hair Modeling
- URL: http://arxiv.org/abs/2407.19451v3
- Date: Thu, 8 Aug 2024 04:01:03 GMT
- Title: Perm: A Parametric Representation for Multi-Style 3D Hair Modeling
- Authors: Chengan He, Xin Sun, Zhixin Shu, Fujun Luan, Sören Pirk, Jorge Alejandro Amador Herrera, Dominik L. Michels, Tuanfeng Y. Wang, Meng Zhang, Holly Rushmeier, Yi Zhou,
- Abstract summary: Perm is a learned parametric model of human 3D hair designed to facilitate various hair-related applications.
We propose to disentangle the global hair shape and local strand details using a PCA-based strand representation in the frequency domain.
These textures are later parameterized with different generative models, emulating common stages in the hair modeling process.
- Score: 22.790597419351528
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present Perm, a learned parametric model of human 3D hair designed to facilitate various hair-related applications. Unlike previous work that jointly models the global hair shape and local strand details, we propose to disentangle them using a PCA-based strand representation in the frequency domain, thereby allowing more precise editing and output control. Specifically, we leverage our strand representation to fit and decompose hair geometry textures into low- to high-frequency hair structures. These decomposed textures are later parameterized with different generative models, emulating common stages in the hair modeling process. We conduct extensive experiments to validate the architecture design of \textsc{Perm}, and finally deploy the trained model as a generic prior to solve task-agnostic problems, further showcasing its flexibility and superiority in tasks such as 3D hair parameterization, hairstyle interpolation, single-view hair reconstruction, and hair-conditioned image generation. Our code, data, and supplemental can be found at our project page: https://cs.yale.edu/homes/che/projects/perm/
Related papers
- Towards Unified 3D Hair Reconstruction from Single-View Portraits [27.404011546957104]
We propose a novel strategy to enable single-view 3D reconstruction for a variety of hair types via a unified pipeline.
Our experiments demonstrate that reconstructing braided and un-braided 3D hair from single-view images via a unified approach is possible.
arXiv Detail & Related papers (2024-09-25T12:21:31Z) - Human Hair Reconstruction with Strand-Aligned 3D Gaussians [39.32397354314153]
We introduce a new hair modeling method that uses a dual representation of classical hair strands and 3D Gaussians.
In contrast to recent approaches that leverage unstructured Gaussians to model human avatars, our method reconstructs the hair using 3D polylines, or strands.
Our method, named Gaussian Haircut, is evaluated on synthetic and real scenes and demonstrates state-of-the-art performance in the task of strand-based hair reconstruction.
arXiv Detail & Related papers (2024-09-23T07:49:46Z) - MonoHair: High-Fidelity Hair Modeling from a Monocular Video [40.27026803872373]
MonoHair is a generic framework to achieve high-fidelity hair reconstruction from a monocular video.
Our approach bifurcates the hair modeling process into two main stages: precise exterior reconstruction and interior structure inference.
Our experiments demonstrate that our method exhibits robustness across diverse hairstyles and achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-03-27T08:48:47Z) - HAAR: Text-Conditioned Generative Model of 3D Strand-based Human
Hairstyles [85.12672855502517]
We present HAAR, a new strand-based generative model for 3D human hairstyles.
Based on textual inputs, HAAR produces 3D hairstyles that could be used as production-level assets in modern computer graphics engines.
arXiv Detail & Related papers (2023-12-18T19:19:32Z) - Generalizable One-shot Neural Head Avatar [90.50492165284724]
We present a method that reconstructs and animates a 3D head avatar from a single-view portrait image.
We propose a framework that not only generalizes to unseen identities based on a single-view image, but also captures characteristic details within and beyond the face area.
arXiv Detail & Related papers (2023-06-14T22:33:09Z) - Neural Haircut: Prior-Guided Strand-Based Hair Reconstruction [4.714310894654027]
This work proposes an approach capable of accurate hair geometry reconstruction at a strand level from a monocular video or multi-view images captured in uncontrolled conditions.
The combined system, named Neural Haircut, achieves high realism and personalization of the reconstructed hairstyles.
arXiv Detail & Related papers (2023-06-09T13:08:34Z) - HairStep: Transfer Synthetic to Real Using Strand and Depth Maps for
Single-View 3D Hair Modeling [55.57803336895614]
We tackle the challenging problem of learning-based single-view 3D hair modeling.
We first propose a novel intermediate representation, termed as HairStep, which consists of a strand map and a depth map.
It is found that HairStep not only provides sufficient information for accurate 3D hair modeling, but also is feasible to be inferred from real images.
arXiv Detail & Related papers (2023-03-05T15:28:13Z) - i3DMM: Deep Implicit 3D Morphable Model of Human Heads [115.19943330455887]
We present the first deep implicit 3D morphable model (i3DMM) of full heads.
It not only captures identity-specific geometry, texture, and expressions of the frontal face, but also models the entire head, including hair.
We show the merits of i3DMM using ablation studies, comparisons to state-of-the-art models, and applications such as semantic head editing and texture transfer.
arXiv Detail & Related papers (2020-11-28T15:01:53Z) - MichiGAN: Multi-Input-Conditioned Hair Image Generation for Portrait
Editing [122.82964863607938]
MichiGAN is a novel conditional image generation method for interactive portrait hair manipulation.
We provide user control over every major hair visual factor, including shape, structure, appearance, and background.
We also build an interactive portrait hair editing system that enables straightforward manipulation of hair by projecting intuitive and high-level user inputs.
arXiv Detail & Related papers (2020-10-30T17:59:10Z) - Combining Implicit Function Learning and Parametric Models for 3D Human
Reconstruction [123.62341095156611]
Implicit functions represented as deep learning approximations are powerful for reconstructing 3D surfaces.
Such features are essential in building flexible models for both computer graphics and computer vision.
We present methodology that combines detail-rich implicit functions and parametric representations.
arXiv Detail & Related papers (2020-07-22T13:46:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.