論文の概要: Multi-task Neural Networks for Pain Intensity Estimation using Electrocardiogram and Demographic Factors
- arxiv url: http://arxiv.org/abs/2407.19475v1
- Date: Sun, 28 Jul 2024 11:57:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 18:02:25.070004
- Title: Multi-task Neural Networks for Pain Intensity Estimation using Electrocardiogram and Demographic Factors
- Title(参考訳): 心電図と復調因子を用いた痛み強度推定のためのマルチタスクニューラルネットワーク
- Authors: Stefanos Gkikas, Chariklia Chatzaki, Manolis Tsiknakis,
- Abstract要約: 心電図による心電図では,異なる集団間での痛み知覚の変化が明らかにされている。
本稿では,各個人の年齢と性別情報を利用した痛み自動推定のための新しいマルチタスクニューラルネットワークを提案する。
- 参考スコア(独自算出の注目度): 0.8602553195689511
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pain is a complex phenomenon which is manifested and expressed by patients in various forms. The immediate and objective recognition of it is a great of importance in order to attain a reliable and unbiased healthcare system. In this work, we elaborate electrocardiography signals revealing the existence of variations in pain perception among different demographic groups. We exploit this insight by introducing a novel multi-task neural network for automatic pain estimation utilizing the age and the gender information of each individual, and show its advantages compared to other approaches.
- Abstract(参考訳): 痛みは複雑な現象であり、様々な形で患者によって発現・発現される。
即時かつ客観的な認識は、信頼性が高く偏見のない医療システムを達成するために非常に重要である。
本研究は, 心電図による心電図信号を用いて, 異なる集団群間における痛み知覚の変動の存在を明らかにした。
この知見を生かして、年齢と性別情報を利用した痛みの自動推定のための新しいマルチタスクニューラルネットワークを導入し、他のアプローチと比較してその優位性を示す。
関連論文リスト
- GAMMA-PD: Graph-based Analysis of Multi-Modal Motor Impairment Assessments in Parkinson's Disease [9.69595196614787]
本稿では,多モード臨床データ解析のための新しいヘテロジニアスハイパーグラフ融合フレームワークであるGAMA-PDを提案する。
GAMMA-PDは、高次情報を保存することにより、画像と非画像データを"ハイパーネットワーク"(患者集団グラフ)に統合する。
パーキンソン病における運動障害症状の予測に有意な改善が認められた。
論文 参考訳(メタデータ) (2024-10-01T15:51:33Z) - Investigation of Customized Medical Decision Algorithms Utilizing Graph Neural Networks [15.04251924479172]
本稿では,グラフニューラルネットワーク(GNN)を用いた個人化医療意思決定アルゴリズムを提案する。
提案アルゴリズムは, 疾患予測精度, 治療効果評価, 患者リスク階層化の点で, 高い性能を示した。
論文 参考訳(メタデータ) (2024-05-23T04:30:41Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
本研究は, スマートフォンで撮影した画像と本質的な臨床および人口統計情報を統合することで, 皮膚病変を分類する新しいマルチモーダル手法を提案する。
この手法の特徴は、超高解像度画像予測に焦点を当てた補助的なタスクの統合である。
PAD-UFES20データセットを用いて,様々なディープラーニングアーキテクチャを用いて実験を行った。
論文 参考訳(メタデータ) (2024-02-16T05:16:20Z) - Automated facial recognition system using deep learning for pain
assessment in adults with cerebral palsy [0.5242869847419834]
既存の対策は、介護者による直接の観察に依存し、感度と特異性に欠ける。
10のニューラルネットワークが3つの痛み画像データベースでトレーニングされた。
InceptionV3はCP-PAINデータセット上で有望なパフォーマンスを示した。
論文 参考訳(メタデータ) (2024-01-22T17:55:16Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
少ないラベル付きデータでよく一般化する皮膚病変に対する数発のショットベースアプローチを提案する。
提案手法は,アテンションモジュールや分類ネットワークとして機能するセグメンテーションネットワークの融合を含む。
論文 参考訳(メタデータ) (2023-10-11T05:49:47Z) - Transformer Encoder with Multiscale Deep Learning for Pain
Classification Using Physiological Signals [0.0]
痛みは主観的な感覚駆動体験である。
痛みの強さを測定する伝統的な技術は偏見に影響を受けやすく、場合によっては信頼できない。
そこで我々は,生理的シグナルを入力として,痛み強度を分類する新しいトランスフォーマーエンコーダディープラーニングフレームワークPainAttnNetを開発した。
論文 参考訳(メタデータ) (2023-03-13T04:21:33Z) - Pain level and pain-related behaviour classification using GRU-based
sparsely-connected RNNs [61.080598804629375]
慢性的な痛みを持つ人は、特定の身体の動きを無意識に適応させ、怪我や追加の痛みから身を守る。
この相関関係を分析するための専用のベンチマークデータベースが存在しないため、日々の行動に影響を及ぼす可能性のある特定の状況の1つを検討した。
我々は、複数のオートエンコーダを組み込んだゲートリカレントユニット(GRU)と疎結合なリカレントニューラルネットワーク(s-RNN)のアンサンブルを提案した。
本手法は,痛みレベルと痛み関連行動の両方の分類において,最先端のアプローチよりも優れていることを示すいくつかの実験を行った。
論文 参考訳(メタデータ) (2022-12-20T12:56:28Z) - Leveraging Human Selective Attention for Medical Image Analysis with
Limited Training Data [72.1187887376849]
選択的な注意機構は、注意散らしの存在を無視することで、認知システムがタスク関連視覚的手がかりに焦点を合わせるのに役立つ。
本稿では,医療画像解析タスクにおいて,小さなトレーニングデータを用いたガベージを利用したフレームワークを提案する。
本手法は腫瘍の3次元分割と2次元胸部X線分類において優れた性能を示す。
論文 参考訳(メタデータ) (2021-12-02T07:55:25Z) - MEDUSA: Multi-scale Encoder-Decoder Self-Attention Deep Neural Network
Architecture for Medical Image Analysis [71.2022403915147]
医用画像解析に適したマルチスケールエンコーダデコーダ自己保持機構であるMEDUSAを紹介する。
我々は、COVIDx、RSNA RICORD、RSNA Pneumonia Challengeなどの医療画像分析ベンチマークの最先端性能を得た。
論文 参考訳(メタデータ) (2021-10-12T15:05:15Z) - Non-contact Pain Recognition from Video Sequences with Remote
Physiological Measurements Prediction [53.03469655641418]
痛み認識のための非接触方式で外観変化と生理的手がかりの両方を符号化する新しいマルチタスク学習フレームワークを提案する。
我々は、一般に利用可能な痛みデータベース上で、非接触痛認識の最先端性能を確立する。
論文 参考訳(メタデータ) (2021-05-18T20:47:45Z) - Multimodal Gait Recognition for Neurodegenerative Diseases [38.06704951209703]
3つの神経変性疾患の歩容差を学習するための新しいハイブリッドモデルを提案する。
新しい相関メモリニューラルネットワークアーキテクチャは、時間的特徴を抽出するために設計されている。
いくつかの最先端技術と比較して,提案手法はより正確な分類結果を示す。
論文 参考訳(メタデータ) (2021-01-07T10:17:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。