論文の概要: Exploring the Adversarial Robustness of CLIP for AI-generated Image Detection
- arxiv url: http://arxiv.org/abs/2407.19553v1
- Date: Sun, 28 Jul 2024 18:20:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 15:45:34.621877
- Title: Exploring the Adversarial Robustness of CLIP for AI-generated Image Detection
- Title(参考訳): AI生成画像検出のためのCLIPの逆ロバスト性探索
- Authors: Vincenzo De Rosa, Fabrizio Guillaro, Giovanni Poggi, Davide Cozzolino, Luisa Verdoliva,
- Abstract要約: 比較言語-画像事前学習(CLIP)に基づく手法に着目し,AI生成画像検出器の対角的ロバスト性について検討した。
CLIPベースの検出器は、CNNベースの検出器と同様に、ホワイトボックス攻撃に対して脆弱である。
- 参考スコア(独自算出の注目度): 9.516391314161154
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, many forensic detectors have been proposed to detect AI-generated images and prevent their use for malicious purposes. Convolutional neural networks (CNNs) have long been the dominant architecture in this field and have been the subject of intense study. However, recently proposed Transformer-based detectors have been shown to match or even outperform CNN-based detectors, especially in terms of generalization. In this paper, we study the adversarial robustness of AI-generated image detectors, focusing on Contrastive Language-Image Pretraining (CLIP)-based methods that rely on Visual Transformer backbones and comparing their performance with CNN-based methods. We study the robustness to different adversarial attacks under a variety of conditions and analyze both numerical results and frequency-domain patterns. CLIP-based detectors are found to be vulnerable to white-box attacks just like CNN-based detectors. However, attacks do not easily transfer between CNN-based and CLIP-based methods. This is also confirmed by the different distribution of the adversarial noise patterns in the frequency domain. Overall, this analysis provides new insights into the properties of forensic detectors that can help to develop more effective strategies.
- Abstract(参考訳): 近年、AI生成画像の検出や悪意のある目的での使用を防止するために、多くの法医学的検知器が提案されている。
畳み込みニューラルネットワーク(CNN)はこの分野で長い間支配的なアーキテクチャであり、激しい研究の対象となっている。
しかし、最近提案されたTransformerベースの検出器は、特に一般化の点において、CNNベースの検出器と一致するか、さらに優れていることが示されている。
本稿では,視覚変換器のバックボーンに依存するコントラスト言語-画像事前学習(CLIP)法に着目し,その性能をCNN法と比較し,AI生成画像検出器の対角的ロバスト性について検討する。
種々の条件下で異なる敵攻撃に対するロバスト性について検討し、数値結果と周波数領域パターンの両方を解析する。
CLIPベースの検出器は、CNNベースの検出器と同様に、ホワイトボックス攻撃に対して脆弱である。
しかし、攻撃はCNNベースのメソッドとCLIPベースのメソッド間で簡単に伝達できない。
また、周波数領域における逆方向雑音パターンの異なる分布により、このことが確認される。
全体として、この分析はより効果的な戦略を開発するのに役立つ法医学的検出器の特性に関する新たな洞察を提供する。
関連論文リスト
- AdvQDet: Detecting Query-Based Adversarial Attacks with Adversarial Contrastive Prompt Tuning [93.77763753231338]
CLIP画像エンコーダを微調整し、2つの中間対向クエリに対して同様の埋め込みを抽出するために、ACPT(Adversarial Contrastive Prompt Tuning)を提案する。
我々は,ACPTが7つの最先端クエリベースの攻撃を検出できることを示す。
また,ACPTは3種類のアダプティブアタックに対して堅牢であることを示す。
論文 参考訳(メタデータ) (2024-08-04T09:53:50Z) - Vulnerabilities in AI-generated Image Detection: The Challenge of Adversarial Attacks [17.87119255294563]
ホワイトボックスおよびブラックボックス設定下での敵攻撃に対する最先端AIGI検出器の脆弱性について検討する。
まず、実画像と周波数領域の偽画像との明らかな違いに着想を得て、周波数領域の下に摂動を加え、元の周波数分布からイメージを遠ざける。
FPBAは、モデル、ジェネレータ、防御方法、さらにはクロスジェネレータ検出を回避して、ブラックボックス攻撃を成功させることができるからです。
論文 参考訳(メタデータ) (2024-07-30T14:07:17Z) - Improving Adversarial Robustness of Masked Autoencoders via Test-time
Frequency-domain Prompting [133.55037976429088]
BERTプリトレーニング(BEiT, MAE)を備えた視覚変換器の対向ロバスト性について検討する。
意外な観察は、MAEが他のBERT事前訓練法よりも敵の頑健さが著しく悪いことである。
我々は,MAEの対角的堅牢性を高めるための,シンプルで効果的な方法を提案する。
論文 参考訳(メタデータ) (2023-08-20T16:27:17Z) - New Adversarial Image Detection Based on Sentiment Analysis [37.139957973240264]
敵攻撃モデル、例えばDeepFoolは、敵のサンプル検出技術の増加とアウトランの段階にある。
本稿では,画像データセットに対する最新の対角攻撃を特定するために,最先端の検出器よりも優れた新しい対角検出法を提案する。
論文 参考訳(メタデータ) (2023-05-03T14:32:21Z) - Detection of Adversarial Physical Attacks in Time-Series Image Data [12.923271427789267]
本稿では,VGと多数投票法を併用したVG(VisionGuard*)を提案する。
これは、意思決定のためにオンボードセンサーを使用して画像が時間とともに収集される自律システムアプリケーションによって動機付けられている。
我々は、最先端のロバストな物理的攻撃によって生成された、クリーンかつ物理的に攻撃された交通標識のビデオ上で、VG*を評価した。
論文 参考訳(メタデータ) (2023-04-27T02:08:13Z) - Unfolding Local Growth Rate Estimates for (Almost) Perfect Adversarial
Detection [22.99930028876662]
畳み込みニューラルネットワーク(CNN)は、多くの知覚的タスクにおける最先端のソリューションを定義する。
現在のCNNアプローチは、システムを騙すために特別に作られた入力の敵の摂動に対して脆弱なままである。
本稿では,ネットワークの局所固有次元(LID)と敵攻撃の関係について,最近の知見を生かした,シンプルで軽量な検出器を提案する。
論文 参考訳(メタデータ) (2022-12-13T17:51:32Z) - Adversarially Robust One-class Novelty Detection [83.1570537254877]
既存のノベルティ検出器は敵の例に感受性があることが示される。
本稿では, 新規性検知器の潜伏空間を制御し, 敵に対する堅牢性を向上する防衛戦略を提案する。
論文 参考訳(メタデータ) (2021-08-25T10:41:29Z) - BreakingBED -- Breaking Binary and Efficient Deep Neural Networks by
Adversarial Attacks [65.2021953284622]
CNNのホワイトボックス攻撃やブラックボックス攻撃に対する堅牢性について検討する。
結果は、蒸留されたCNN、エージェントベースの最新のprunedモデル、およびバイナライズニューラルネットワークのために示されています。
論文 参考訳(メタデータ) (2021-03-14T20:43:19Z) - SpectralDefense: Detecting Adversarial Attacks on CNNs in the Fourier
Domain [10.418647759223964]
入力画像と特徴マップのフーリエ領域における解析が,良質なテストサンプルと敵画像の区別にどのように役立つかを示す。
2つの新しい検出方法を提案する。
論文 参考訳(メタデータ) (2021-03-04T12:48:28Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - Detecting Adversarial Examples by Input Transformations, Defense
Perturbations, and Voting [71.57324258813674]
畳み込みニューラルネットワーク(CNN)は、視覚認識タスクにおいて超人的性能に達することが証明されている。
CNNは敵の例、すなわち不正な出力をネットワークに強制する悪意のある画像によって簡単に騙される。
本稿では,画像変換による敵例の検出を幅広く検討し,新しい手法を提案する。
論文 参考訳(メタデータ) (2021-01-27T14:50:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。