Multiplexed scanning microscopy with dual-qubit spin sensors
- URL: http://arxiv.org/abs/2407.19576v1
- Date: Sun, 28 Jul 2024 20:06:04 GMT
- Title: Multiplexed scanning microscopy with dual-qubit spin sensors
- Authors: William S. Huxter, Federico Dalmagioni, Christian L. Degen,
- Abstract summary: We develop a multiplexed quantum sensing approach with probes containing two nitrogen-vacancy (NV) centers at the tip apex.
Scanning dual-NV magnetometry is first demonstrated by simultaneously imaging multiple field projections of a ferrimagnetic racetrack device.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scanning probe microscopy with multi-qubit sensors offers the potential to improve imaging speed and measure previously inaccessible quantities, such as two-point correlations. We develop a multiplexed quantum sensing approach with scanning probes containing two nitrogen-vacancy (NV) centers at the tip apex. A shared optical channel is used for simultaneous qubit initialization and readout, while phase- and frequency-dependent microwave spin manipulations are leveraged for de-multiplexing the optical readout signal. Scanning dual-NV magnetometry is first demonstrated by simultaneously imaging multiple field projections of a ferrimagnetic racetrack device. Then, we record the two-point covariance of spatially correlated field fluctuations across a current-carrying wire. Our multiplex framework establishes a method to investigate a variety of spatio-temporal correlations, including phase transitions and electronic noise, with nanoscale resolution.
Related papers
- Passive photonic CZ gate with two-level emitters in chiral multi-mode waveguide QED [41.94295877935867]
We design a passive conditional gate between co-propagating photons using an array of only two-level emitters.
The key resource is to harness the effective photon-photon interaction induced by the chiral coupling of the emitter array to two waveguide modes.
We show how to harness this non-linear phase shift to engineer a conditional, deterministic photonic gate in different qubit encodings.
arXiv Detail & Related papers (2024-07-08T18:00:25Z) - Two-tone spectroscopy for the detection of two-level systems in superconducting qubits [108.40985826142428]
Two-level systems (TLS) of unclear physical origin are a major contributor to decoherence in superconducting qubits.
We propose a novel method that requires only a microwave drive and dispersive readout, and thus also works fixed-frequency qubits.
arXiv Detail & Related papers (2024-04-22T09:53:00Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Reconstructing the multiphoton spatial wave function with coincidence
wavefront sensing [7.600005876710375]
We introduce the coincidence wavefront sensing (CWS) method to reconstruct the phase of the multiphoton transverse spatial wave function.
Numerical simulations of two-photon cases using the weak measurement wavefront sensor are performed to test its correctness.
arXiv Detail & Related papers (2023-04-01T05:51:25Z) - Microwave-frequency scanning gate microscopy of a Si/SiGe double quantum
dot [0.0]
We combine scanning probe microscopy with the speed of microwave measurements in a Si/SiGe quantum dot.
We resolve $sim$65 $mu$eV excited states, an energy scale consistent with typical valley splittings in Si/SiGe.
Future extensions of this approach may allow spatial mapping of the valley splitting in Si devices.
arXiv Detail & Related papers (2022-03-11T13:31:12Z) - Optical Entanglement of Distinguishable Quantum Emitters [0.0]
We propose and demonstrate an efficient method for entangling emitters with optical transitions separated by many linewidths.
In our approach, electro-optic modulators enable a single photon to herald a parity measurement on a pair of spin qubits.
Working with distinguishable emitters allows for individual qubit addressing and readout, enabling parallel control and entanglement of both co-located and spatially separated emitters.
arXiv Detail & Related papers (2021-08-24T19:37:08Z) - Homodyne detection of a two-photon resonance assisted by cooperative
emission [0.0]
We explore atomic two-photon spectroscopy with self-aligned homodyne interferometry in a $Lambda$-system with large optical depth.
By switching off the probe laser abruptly (flash effect), the transient transmission signal is reinforced by cooperativity.
This technique has potential applications in sensing, such as magnetometry and velocimetry, and in coherent population trapping clocks.
arXiv Detail & Related papers (2021-05-26T09:59:08Z) - Tunable Anderson Localization of Dark States [146.2730735143614]
We experimentally study Anderson localization in a superconducting waveguide quantum electrodynamics system.
We observe an exponential suppression of the transmission coefficient in the vicinity of its subradiant dark modes.
The experiment opens the door to the study of various localization phenomena on a new platform.
arXiv Detail & Related papers (2021-05-25T07:52:52Z) - Position Sensitive Response of a Single-Pixel Large-Area SNSPD [58.720142291102135]
Superconducting nanowire single photon detectors (SNSPDs) are typically used as single-mode-fiber-coupled single-pixel detectors.
Large area detectors are increasingly critical for applications ranging from microscopy to free-space quantum communications.
We explore changes in the rising edge of the readout pulse for large-area SNSPDs as a function of the bias current, optical spot size on the detector, and number of photons per pulse.
arXiv Detail & Related papers (2020-05-29T23:33:11Z) - Coupling colloidal quantum dots to gap waveguides [62.997667081978825]
coupling between single photon emitters and integrated photonic circuits is an emerging topic relevant for quantum information science and other nanophotonic applications.
We investigate the coupling between a hybrid system of colloidal quantum dots and propagating gap modes of a silicon nitride waveguide system.
arXiv Detail & Related papers (2020-03-30T21:18:27Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.