Coupling colloidal quantum dots to gap waveguides
- URL: http://arxiv.org/abs/2003.13823v1
- Date: Mon, 30 Mar 2020 21:18:27 GMT
- Title: Coupling colloidal quantum dots to gap waveguides
- Authors: Niels M. Israelsen, Ying-Wei Lu, Alexander Huck, Ulrik L. Andersen
- Abstract summary: coupling between single photon emitters and integrated photonic circuits is an emerging topic relevant for quantum information science and other nanophotonic applications.
We investigate the coupling between a hybrid system of colloidal quantum dots and propagating gap modes of a silicon nitride waveguide system.
- Score: 62.997667081978825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The coupling between single photon emitters and integrated photonic circuits
is an emerging topic relevant for quantum information science and other
nanophotonic applications. We investigate the coupling between a hybrid system
of colloidal quantum dots and propagating gap modes of a silicon nitride
waveguide system. We furthermore explore the density of optical states of the
system by using a scanning probe technique and find that the quantum dots
couple significantly to the photonic circuit. Our results indicate that a
scalable slot-waveguide might serve as a promising platform in future
developments of integrated quantum circuitry.
Related papers
- Demonstration of Lossy Linear Transformations and Two-Photon Interference on a Photonic Chip [78.1768579844556]
We show that engineered loss, using an auxiliary waveguide, allows one to invert the spatial statistics from bunching to antibunching.
We study the photon statistics within the loss-emulating channel and observe photon coincidences, which may provide insights into the design of quantum photonic integrated chips.
arXiv Detail & Related papers (2024-04-09T06:45:46Z) - Topological and conventional nano-photonic waveguides for chiral
integrated quantum optics [0.35781413407585794]
Chirality in integrated quantum photonics has emerged as a promising route towards achieving scalable quantum technologies with quantum nonlinearity effects.
We present a comprehensive investigation of chiral coupling in topological photonic waveguides using a combination of experimental, theoretical, and numerical analyses.
Our results provide crucial insights into the degree and characteristics of chiral light-matter interactions in topological photonic quantum circuits and pave the way towards the implementation of quantitatively-predicted quantum nonlinear effects on-chip.
arXiv Detail & Related papers (2023-05-18T16:09:56Z) - Few-photon transport via a multimode nonlinear cavity: theory and
applications [0.0]
We study few-photon transport via a waveguide-coupled multimode optical cavity with second-order bulk nonlinearity.
Our results might lead to significant applications of quantum photonic circuits in all-optical quantum information processing and quantum network protocols.
arXiv Detail & Related papers (2022-09-08T15:28:05Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Enhanced TEMPO algorithm for quantum path integrals with off-diagonal
system-bath coupling: applications to photonic quantum networks [0.0]
We extend the enhanced TEMPO algorithm for quantum path integrals using tensor networks.
We exemplify the approach on a coupled cavity system with spatially separated quantum two-state emitters.
arXiv Detail & Related papers (2021-10-04T11:31:44Z) - Single photon emission from individual nanophotonic-integrated colloidal
quantum dots [45.82374977939355]
Solution processible colloidal quantum dots hold great promise for realizing single-photon sources embedded into scalable quantum technology platforms.
We report on integrating individual colloidal core-shell quantum dots into a nanophotonic network that allows for excitation and efficient collection of single-photons via separate waveguide channels.
arXiv Detail & Related papers (2021-04-23T22:14:17Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.