You shall know a piece by the company it keeps. Chess plays as a data for word2vec models
- URL: http://arxiv.org/abs/2407.19600v1
- Date: Sun, 28 Jul 2024 22:12:36 GMT
- Title: You shall know a piece by the company it keeps. Chess plays as a data for word2vec models
- Authors: Boris Orekhov,
- Abstract summary: I show how word embeddings (word2vec) can work on chess game texts instead of natural language texts.
It's unlikely that these vector models will help engines or people choose the best move.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, I apply linguistic methods of analysis to non-linguistic data, chess plays, metaphorically equating one with the other and seeking analogies. Chess game notations are also a kind of text, and one can consider the records of moves or positions of pieces as words and statements in a certain language. In this article I show how word embeddings (word2vec) can work on chess game texts instead of natural language texts. I don't see how this representation of chess data can be used productively. It's unlikely that these vector models will help engines or people choose the best move. But in a purely academic sense, it's clear that such methods of information representation capture something important about the very nature of the game, which doesn't necessarily lead to a win.
Related papers
- Predicting User Perception of Move Brilliance in Chess [3.434553688053531]
We show the first system for classifying chess moves as brilliant.
The system achieves an accuracy of 79% (with 50% base-rate), a PPV of 83%, and an NPV of 75%.
We show that a move is more likely to be predicted as brilliant, all things being equal, if a weaker engine considers it lower-quality.
arXiv Detail & Related papers (2024-06-14T17:46:26Z) - Learning to Play Chess from Textbooks (LEAP): a Corpus for Evaluating
Chess Moves based on Sentiment Analysis [4.314956204483074]
This paper examines chess textbooks as a new knowledge source for enabling machines to learn how to play chess.
We developed the LEAP corpus, a first and new heterogeneous dataset with structured (chess move notations and board states) and unstructured data.
We performed empirical experiments that assess the performance of various transformer-based baseline models for sentiment analysis.
arXiv Detail & Related papers (2023-10-31T08:26:02Z) - ChessGPT: Bridging Policy Learning and Language Modeling [17.85415939196955]
ChessGPT is a GPT model bridging policy learning and language modeling.
We build a large-scale game and language dataset related to chess.
We showcase two model examples ChessCLIP and ChessGPT, integrating policy learning and language modeling.
arXiv Detail & Related papers (2023-06-15T15:35:31Z) - Statistical analysis of chess games: space control and tipping points [0.0]
We first focus on spatial properties and the location of pieces and show that the number of possible moves during a game is positively correlated with its outcome.
We then study heatmaps of pieces and show that the spatial distribution of pieces varies less between human players than with engines (such as Stockfish)
arXiv Detail & Related papers (2023-04-22T14:54:34Z) - Intransitively winning chess players positions [91.3755431537592]
The space of relations between winningness of positions of chess players is non-Euclidean.
The Zermelo-von Neumann theorem is complemented by statements about possibility vs. impossibility of building pure winning strategies.
arXiv Detail & Related papers (2022-12-11T05:55:05Z) - Grammar-Based Grounded Lexicon Learning [68.59500589319023]
G2L2 is a lexicalist approach toward learning a compositional and grounded meaning representation of language.
At the core of G2L2 is a collection of lexicon entries, which map each word to a syntactic type and a neuro-symbolic semantic program.
G2L2 can generalize from small amounts of data to novel compositions of words.
arXiv Detail & Related papers (2022-02-17T18:19:53Z) - Measuring the Non-Transitivity in Chess [19.618609913302855]
We quantify the non-transitivity in Chess through real-world data from human players.
There exists a strong connection between the degree of non-transitivity and the progression of a Chess player's rating.
arXiv Detail & Related papers (2021-10-22T12:15:42Z) - Deriving Word Vectors from Contextualized Language Models using
Topic-Aware Mention Selection [46.97185212695267]
We propose a method for learning word representations that follows this basic strategy.
We take advantage of contextualized language models (CLMs) rather than bags of word vectors to encode contexts.
We show that this simple strategy leads to high-quality word vectors, which are more predictive of semantic properties than word embeddings and existing CLM-based strategies.
arXiv Detail & Related papers (2021-06-15T08:02:42Z) - Learning Chess Blindfolded: Evaluating Language Models on State Tracking [69.3794549747725]
We consider the task of language modeling for the game of chess.
Unlike natural language, chess notations describe a simple, constrained, and deterministic domain.
We find that transformer language models can learn to track pieces and predict legal moves with high accuracy when trained solely on move sequences.
arXiv Detail & Related papers (2021-02-26T01:16:23Z) - Teach me to play, gamer! Imitative learning in computer games via
linguistic description of complex phenomena and decision tree [55.41644538483948]
We present a new machine learning model by imitation based on the linguistic description of complex phenomena.
The method can be a good alternative to design and implement the behaviour of intelligent agents in video game development.
arXiv Detail & Related papers (2021-01-06T21:14:10Z) - Learning to Play Sequential Games versus Unknown Opponents [93.8672371143881]
We consider a repeated sequential game between a learner, who plays first, and an opponent who responds to the chosen action.
We propose a novel algorithm for the learner when playing against an adversarial sequence of opponents.
Our results include algorithm's regret guarantees that depend on the regularity of the opponent's response.
arXiv Detail & Related papers (2020-07-10T09:33:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.