LoginMEA: Local-to-Global Interaction Network for Multi-modal Entity Alignment
- URL: http://arxiv.org/abs/2407.19625v1
- Date: Mon, 29 Jul 2024 01:06:45 GMT
- Title: LoginMEA: Local-to-Global Interaction Network for Multi-modal Entity Alignment
- Authors: Taoyu Su, Xinghua Zhang, Jiawei Sheng, Zhenyu Zhang, Tingwen Liu,
- Abstract summary: Multi-modal entity alignment (MMEA) aims to identify equivalent entities between two multi-modal knowledge graphs.
We propose a novel local-to-global interaction network for MMEA, termed as LoginMEA.
- Score: 18.365849722239865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-modal entity alignment (MMEA) aims to identify equivalent entities between two multi-modal knowledge graphs (MMKGs), whose entities can be associated with relational triples and related images. Most previous studies treat the graph structure as a special modality, and fuse different modality information with separate uni-modal encoders, neglecting valuable relational associations in modalities. Other studies refine each uni-modal information with graph structures, but may introduce unnecessary relations in specific modalities. To this end, we propose a novel local-to-global interaction network for MMEA, termed as LoginMEA. Particularly, we first fuse local multi-modal interactions to generate holistic entity semantics and then refine them with global relational interactions of entity neighbors. In this design, the uni-modal information is fused adaptively, and can be refined with relations accordingly. To enrich local interactions of multi-modal entity information, we device modality weights and low-rank interactive fusion, allowing diverse impacts and element-level interactions among modalities. To capture global interactions of graph structures, we adopt relation reflection graph attention networks, which fully capture relational associations between entities. Extensive experiments demonstrate superior results of our method over 5 cross-KG or bilingual benchmark datasets, indicating the effectiveness of capturing local and global interactions.
Related papers
- NativE: Multi-modal Knowledge Graph Completion in the Wild [51.80447197290866]
We propose a comprehensive framework NativE to achieve MMKGC in the wild.
NativE proposes a relation-guided dual adaptive fusion module that enables adaptive fusion for any modalities.
We construct a new benchmark called WildKGC with five datasets to evaluate our method.
arXiv Detail & Related papers (2024-03-28T03:04:00Z) - Multi-Grained Multimodal Interaction Network for Entity Linking [65.30260033700338]
Multimodal entity linking task aims at resolving ambiguous mentions to a multimodal knowledge graph.
We propose a novel Multi-GraIned Multimodal InteraCtion Network $textbf(MIMIC)$ framework for solving the MEL task.
arXiv Detail & Related papers (2023-07-19T02:11:19Z) - Multimodal Learning Without Labeled Multimodal Data: Guarantees and Applications [90.6849884683226]
We study the challenge of interaction quantification in a semi-supervised setting with only labeled unimodal data.
Using a precise information-theoretic definition of interactions, our key contribution is the derivation of lower and upper bounds.
We show how these theoretical results can be used to estimate multimodal model performance, guide data collection, and select appropriate multimodal models for various tasks.
arXiv Detail & Related papers (2023-06-07T15:44:53Z) - Global-and-Local Collaborative Learning for Co-Salient Object Detection [162.62642867056385]
The goal of co-salient object detection (CoSOD) is to discover salient objects that commonly appear in a query group containing two or more relevant images.
We propose a global-and-local collaborative learning architecture, which includes a global correspondence modeling (GCM) and a local correspondence modeling (LCM)
The proposed GLNet is evaluated on three prevailing CoSOD benchmark datasets, demonstrating that our model trained on a small dataset (about 3k images) still outperforms eleven state-of-the-art competitors trained on some large datasets (about 8k-200k images)
arXiv Detail & Related papers (2022-04-19T14:32:41Z) - Coordination Among Neural Modules Through a Shared Global Workspace [78.08062292790109]
In cognitive science, a global workspace architecture has been proposed in which functionally specialized components share information.
We show that capacity limitations have a rational basis in that they encourage specialization and compositionality.
arXiv Detail & Related papers (2021-03-01T18:43:48Z) - RAGA: Relation-aware Graph Attention Networks for Global Entity
Alignment [14.287681294725438]
We propose a novel framework based on Relation-aware Graph Attention Networks to capture the interactions between entities and relations.
Our framework adopts the self-attention mechanism to spread entity information to the relations and then aggregate relation information back to entities.
arXiv Detail & Related papers (2021-03-01T06:30:51Z) - Cascaded Human-Object Interaction Recognition [175.60439054047043]
We introduce a cascade architecture for a multi-stage, coarse-to-fine HOI understanding.
At each stage, an instance localization network progressively refines HOI proposals and feeds them into an interaction recognition network.
With our carefully-designed human-centric relation features, these two modules work collaboratively towards effective interaction understanding.
arXiv Detail & Related papers (2020-03-09T17:05:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.