Navigating the United States Legislative Landscape on Voice Privacy: Existing Laws, Proposed Bills, Protection for Children, and Synthetic Data for AI
- URL: http://arxiv.org/abs/2407.19677v1
- Date: Mon, 29 Jul 2024 03:43:16 GMT
- Title: Navigating the United States Legislative Landscape on Voice Privacy: Existing Laws, Proposed Bills, Protection for Children, and Synthetic Data for AI
- Authors: Satwik Dutta, John H. L. Hansen,
- Abstract summary: This paper presents the state of the privacy legislation at the U.S. Congress.
It outlines how voice data is considered as part of the legislation definition.
It also reviews additional privacy protection for children.
- Score: 28.82435149220576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Privacy is a hot topic for policymakers across the globe, including the United States. Evolving advances in AI and emerging concerns about the misuse of personal data have pushed policymakers to draft legislation on trustworthy AI and privacy protection for its citizens. This paper presents the state of the privacy legislation at the U.S. Congress and outlines how voice data is considered as part of the legislation definition. This paper also reviews additional privacy protection for children. This paper presents a holistic review of enacted and proposed privacy laws, and consideration for voice data, including guidelines for processing children's data, in those laws across the fifty U.S. states. As a groundbreaking alternative to actual human data, ethically generated synthetic data allows much flexibility to keep AI innovation in progress. Given the consideration of synthetic data in AI legislation by policymakers to be relatively new, as compared to that of privacy laws, this paper reviews regulatory considerations for synthetic data.
Related papers
- Smoke Screens and Scapegoats: The Reality of General Data Protection Regulation Compliance -- Privacy and Ethics in the Case of Replika AI [1.325665193924634]
This paper takes a critical approach towards examining the intricacies of these issues within AI companion services.
We analyze articles from public media about the company and its practices to gain insight into the trustworthiness of information provided in the policy.
The results reveal despite privacy notices, data collection practices might harvest personal data without users' full awareness.
arXiv Detail & Related papers (2024-11-07T07:36:19Z) - PrivacyLens: Evaluating Privacy Norm Awareness of Language Models in Action [54.11479432110771]
PrivacyLens is a novel framework designed to extend privacy-sensitive seeds into expressive vignettes and further into agent trajectories.
We instantiate PrivacyLens with a collection of privacy norms grounded in privacy literature and crowdsourced seeds.
State-of-the-art LMs, like GPT-4 and Llama-3-70B, leak sensitive information in 25.68% and 38.69% of cases, even when prompted with privacy-enhancing instructions.
arXiv Detail & Related papers (2024-08-29T17:58:38Z) - Legally Binding but Unfair? Towards Assessing Fairness of Privacy Policies [0.0]
Privacy policies are expected to inform data subjects about their data protection rights and explain data management practices.
This implies that a privacy policy is written in a fair way, e.g., it does not use polarizing terms, does not require a certain education, or does not assume a particular social background.
We identify from fundamental legal sources and fairness research, how the dimensions informational fairness, representational fairness and ethics / morality are related to privacy policies.
We propose options to automatically assess policies in these fairness dimensions, based on text statistics, linguistic methods and artificial intelligence.
arXiv Detail & Related papers (2024-03-12T22:53:32Z) - SoK: The Gap Between Data Rights Ideals and Reality [46.14715472341707]
Do rights-based privacy laws effectively empower individuals over their data?
This paper scrutinizes these approaches by reviewing empirical studies, news articles, and blog posts.
arXiv Detail & Related papers (2023-12-03T21:52:51Z) - A Comparative Audit of Privacy Policies from Healthcare Organizations in
USA, UK and India [19.45392112573428]
This paper presents a large-scale data-driven study to audit privacy policies from healthcare organizations in USA, UK, and India.
First, we collected the privacy policies of thousands of healthcare organizations in these countries and cleaned this privacy policy data using a clustering-based mixed-method technique.
Second, we adopted a summarization-based technique to uncover exact broad data practices across countries and notice important differences.
arXiv Detail & Related papers (2023-06-20T14:21:37Z) - Pile of Law: Learning Responsible Data Filtering from the Law and a
256GB Open-Source Legal Dataset [46.156169284961045]
We offer an approach to filtering grounded in law, which has directly addressed the tradeoffs in filtering material.
First, we gather and make available the Pile of Law, a 256GB dataset of open-source English-language legal and administrative data.
Second, we distill the legal norms that governments have developed to constrain the inclusion of toxic or private content into actionable lessons.
Third, we show how the Pile of Law offers researchers the opportunity to learn such filtering rules directly from the data.
arXiv Detail & Related papers (2022-07-01T06:25:15Z) - Detecting Compliance of Privacy Policies with Data Protection Laws [0.0]
Privacy policies are often written in extensive legal jargon that is difficult to understand.
We aim to bridge that gap by providing a framework that analyzes privacy policies in light of various data protection laws.
By using such a tool, users would be better equipped to understand how their personal data is managed.
arXiv Detail & Related papers (2021-02-21T09:15:15Z) - Second layer data governance for permissioned blockchains: the privacy
management challenge [58.720142291102135]
In pandemic situations, such as the COVID-19 and Ebola outbreak, the action related to sharing health data is crucial to avoid the massive infection and decrease the number of deaths.
In this sense, permissioned blockchain technology emerges to empower users to get their rights providing data ownership, transparency, and security through an immutable, unified, and distributed database ruled by smart contracts.
arXiv Detail & Related papers (2020-10-22T13:19:38Z) - A vision for global privacy bridges: Technical and legal measures for
international data markets [77.34726150561087]
Despite data protection laws and an acknowledged right to privacy, trading personal information has become a business equated with "trading oil"
An open conflict is arising between business demands for data and a desire for privacy.
We propose and test a vision of a personal information market with privacy.
arXiv Detail & Related papers (2020-05-13T13:55:50Z) - Beyond privacy regulations: an ethical approach to data usage in
transportation [64.86110095869176]
We describe how Federated Machine Learning can be applied to the transportation sector.
We see Federated Learning as a method that enables us to process privacy-sensitive data, while respecting customer's privacy.
arXiv Detail & Related papers (2020-04-01T15:10:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.