Multiscale Representation Enhanced Temporal Flow Fusion Model for Long-Term Workload Forecasting
- URL: http://arxiv.org/abs/2407.19697v2
- Date: Mon, 19 Aug 2024 02:13:57 GMT
- Title: Multiscale Representation Enhanced Temporal Flow Fusion Model for Long-Term Workload Forecasting
- Authors: Shiyu Wang, Zhixuan Chu, Yinbo Sun, Yu Liu, Yuliang Guo, Yang Chen, Huiyang Jian, Lintao Ma, Xingyu Lu, Jun Zhou,
- Abstract summary: This paper proposes a novel framework leveraging self-supervised multiscale representation learning to capture both long-term and near-term workload patterns.
The long-term history is encoded through multiscale representations while the near-term observations are modeled via temporal flow fusion.
- Score: 19.426131129034115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate workload forecasting is critical for efficient resource management in cloud computing systems, enabling effective scheduling and autoscaling. Despite recent advances with transformer-based forecasting models, challenges remain due to the non-stationary, nonlinear characteristics of workload time series and the long-term dependencies. In particular, inconsistent performance between long-term history and near-term forecasts hinders long-range predictions. This paper proposes a novel framework leveraging self-supervised multiscale representation learning to capture both long-term and near-term workload patterns. The long-term history is encoded through multiscale representations while the near-term observations are modeled via temporal flow fusion. These representations of different scales are fused using an attention mechanism and characterized with normalizing flows to handle non-Gaussian/non-linear distributions of time series. Extensive experiments on 9 benchmarks demonstrate superiority over existing methods.
Related papers
- Introducing Spectral Attention for Long-Range Dependency in Time Series Forecasting [36.577411683455786]
Recent linear and transformer-based forecasters have shown superior performance in time series forecasting.
They are constrained by their inherent inability to effectively address long-range dependencies in time series data.
We introduce a fast and effective Spectral Attention mechanism, which preserves temporal correlations among samples.
arXiv Detail & Related papers (2024-10-28T06:17:20Z) - Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
We present Timer-XL, a generative Transformer for unified time series forecasting.
Timer-XL achieves state-of-the-art performance across challenging forecasting benchmarks through a unified approach.
arXiv Detail & Related papers (2024-10-07T07:27:39Z) - TimeBridge: Non-Stationarity Matters for Long-term Time Series Forecasting [49.6208017412376]
TimeBridge is a novel framework designed to bridge the gap between non-stationarity and dependency modeling.
TimeBridge consistently achieves state-of-the-art performance in both short-term and long-term forecasting.
arXiv Detail & Related papers (2024-10-06T10:41:03Z) - Integration of Mamba and Transformer -- MAT for Long-Short Range Time Series Forecasting with Application to Weather Dynamics [7.745945701278489]
Long-short range time series forecasting is essential for predicting future trends and patterns over extended periods.
Deep learning models such as Transformers have made significant strides in advancing time series forecasting.
This article examines the advantages and disadvantages of both Mamba and Transformer models.
arXiv Detail & Related papers (2024-09-13T04:23:54Z) - Learning from Polar Representation: An Extreme-Adaptive Model for
Long-Term Time Series Forecasting [10.892801642895904]
We propose Distance-weighted Auto-regularized Neural network (DAN), a novel extreme-adaptive model for long-range forecasting of stremflow enhanced by polar representation learning.
On four real-life hydrologic streamflow datasets, we demonstrate that DAN significantly outperforms both state-of-the-art hydrologic time series prediction methods and general methods designed for long-term time series prediction.
arXiv Detail & Related papers (2023-12-14T09:16:01Z) - Stecformer: Spatio-temporal Encoding Cascaded Transformer for
Multivariate Long-term Time Series Forecasting [11.021398675773055]
We propose a complete solution to address problems in terms of feature extraction and target prediction.
For extraction, we design an efficient-temporal encoding extractor including a semi-adaptive graph to acquire sufficient-temporal information.
For prediction, we propose a Cascaded De Predictor (CDP) to strengthen the correlation between different intervals.
arXiv Detail & Related papers (2023-05-25T13:00:46Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Autoformer: Decomposition Transformers with Auto-Correlation for
Long-Term Series Forecasting [68.86835407617778]
Autoformer is a novel decomposition architecture with an Auto-Correlation mechanism.
In long-term forecasting, Autoformer yields state-of-the-art accuracy, with a relative improvement on six benchmarks.
arXiv Detail & Related papers (2021-06-24T13:43:43Z) - Temporal Latent Auto-Encoder: A Method for Probabilistic Multivariate
Time Series Forecasting [4.131842516813833]
We introduce a novel temporal latent auto-encoder method which enables nonlinear factorization of time series.
By imposing a probabilistic latent space model, complex distributions of the input series are modeled via the decoder.
Our model achieves state-of-the-art performance on many popular multivariate datasets, with gains sometimes as high as $50%$ for several standard metrics.
arXiv Detail & Related papers (2021-01-25T22:29:40Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Transformer Hawkes Process [79.16290557505211]
We propose a Transformer Hawkes Process (THP) model, which leverages the self-attention mechanism to capture long-term dependencies.
THP outperforms existing models in terms of both likelihood and event prediction accuracy by a notable margin.
We provide a concrete example, where THP achieves improved prediction performance for learning multiple point processes when incorporating their relational information.
arXiv Detail & Related papers (2020-02-21T13:48:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.