Mitigating Data Redundancy to Revitalize Transformer-based Long-Term Time Series Forecasting System
- URL: http://arxiv.org/abs/2207.07827v5
- Date: Tue, 25 Mar 2025 23:17:39 GMT
- Title: Mitigating Data Redundancy to Revitalize Transformer-based Long-Term Time Series Forecasting System
- Authors: Mingjie Li, Rui Liu, Guangsi Shi, Mingfei Han, Changling Li, Lina Yao, Xiaojun Chang, Ling Chen,
- Abstract summary: We introduce CLMFormer, a novel framework that mitigates redundancy through curriculum learning and a memory-driven decoder.<n>CLMFormer consistently improves Transformer-based models by up to 30%, demonstrating its effectiveness in long-horizon forecasting.
- Score: 46.39662315849883
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Long-term time-series forecasting (LTSF) is fundamental to various real-world applications, where Transformer-based models have become the dominant framework due to their ability to capture long-range dependencies. However, these models often experience overfitting due to data redundancy in rolling forecasting settings, limiting their generalization ability particularly evident in longer sequences with highly similar adjacent data. In this work, we introduce CLMFormer, a novel framework that mitigates redundancy through curriculum learning and a memory-driven decoder. Specifically, we progressively introduce Bernoulli noise to the training samples, which effectively breaks the high similarity between adjacent data points. This curriculum-driven noise introduction aids the memory-driven decoder by supplying more diverse and representative training data, enhancing the decoder's ability to model seasonal tendencies and dependencies in the time-series data. To further enhance forecasting accuracy, we introduce a memory-driven decoder. This component enables the model to capture seasonal tendencies and dependencies in the time-series data and leverages temporal relationships to facilitate the forecasting process. Extensive experiments on six real-world LTSF benchmarks show that CLMFormer consistently improves Transformer-based models by up to 30%, demonstrating its effectiveness in long-horizon forecasting.
Related papers
- Federated Dynamic Modeling and Learning for Spatiotemporal Data Forecasting [0.8568432695376288]
This paper presents an advanced Federated Learning (FL) framework for forecasting complextemporal data, improving upon recent state-of-the-art models.
The resulting architecture significantly improves the model's capacity to handle complex temporal patterns in diverse forecasting applications.
The efficiency of our approach is demonstrated through extensive experiments on real-world applications, including public datasets for multimodal transport demand forecasting and private datasets for Origin-Destination (OD) matrix forecasting in urban areas.
arXiv Detail & Related papers (2025-03-06T15:16:57Z) - Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
Time series forecasting plays a critical role in various real-world applications, including energy consumption prediction, disease transmission monitoring, and weather forecasting.
Most existing methods rely on a centralized training paradigm, where large amounts of data are collected from distributed devices to a central cloud server.
We propose a novel framework, Fed-TREND, to address data heterogeneity by generating informative synthetic data as auxiliary knowledge carriers.
arXiv Detail & Related papers (2024-11-24T04:56:45Z) - UmambaTSF: A U-shaped Multi-Scale Long-Term Time Series Forecasting Method Using Mamba [7.594115034632109]
We propose UmambaTSF, a novel long-term time series forecasting framework.
It integrates multi-scale feature extraction capabilities of U-shaped encoder-decoder multilayer perceptrons (MLP) with Mamba's long sequence representation.
UmambaTSF achieves state-of-the-art performance and excellent generality on widely used benchmark datasets.
arXiv Detail & Related papers (2024-10-15T04:56:43Z) - Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
We present Timer-XL, a generative Transformer for unified time series forecasting.
Timer-XL achieves state-of-the-art performance across challenging forecasting benchmarks through a unified approach.
arXiv Detail & Related papers (2024-10-07T07:27:39Z) - PRformer: Pyramidal Recurrent Transformer for Multivariate Time Series Forecasting [82.03373838627606]
Self-attention mechanism in Transformer architecture requires positional embeddings to encode temporal order in time series prediction.
We argue that this reliance on positional embeddings restricts the Transformer's ability to effectively represent temporal sequences.
We present a model integrating PRE with a standard Transformer encoder, demonstrating state-of-the-art performance on various real-world datasets.
arXiv Detail & Related papers (2024-08-20T01:56:07Z) - Stock Volume Forecasting with Advanced Information by Conditional Variational Auto-Encoder [49.97673761305336]
We demonstrate the use of Conditional Variational (CVAE) to improve the forecasts of daily stock volume time series in both short and long term forecasting tasks.
CVAE generates non-linear time series as out-of-sample forecasts, which have better accuracy and closer fit of correlation to the actual data.
arXiv Detail & Related papers (2024-06-19T13:13:06Z) - FAITH: Frequency-domain Attention In Two Horizons for Time Series Forecasting [13.253624747448935]
Time Series Forecasting plays a crucial role in various fields such as industrial equipment maintenance, meteorology, energy consumption, traffic flow and financial investment.
Current deep learning-based predictive models often exhibit a significant deviation between their forecasting outcomes and the ground truth.
We propose a novel model Frequency-domain Attention In Two Horizons, which decomposes time series into trend and seasonal components.
arXiv Detail & Related papers (2024-05-22T02:37:02Z) - Generative Pretrained Hierarchical Transformer for Time Series Forecasting [3.739587363053192]
We propose a novel generative pretrained hierarchical transformer architecture for forecasting, named textbfGPHT.
We conduct sufficient experiments on eight datasets with mainstream self-supervised pretraining models and supervised models.
The results demonstrated that GPHT surpasses the baseline models across various fine-tuning and zero/few-shot learning settings in the traditional long-term forecasting task.
arXiv Detail & Related papers (2024-02-26T11:54:54Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
We present a Masked-based Universal Time Series Forecasting Transformer (Moirai)
Moirai is trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains.
Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models.
arXiv Detail & Related papers (2024-02-04T20:00:45Z) - Client: Cross-variable Linear Integrated Enhanced Transformer for
Multivariate Long-Term Time Series Forecasting [4.004869317957185]
"Cross-variable Linear Integrated ENhanced Transformer for Multivariable Long-Term Time Series Forecasting" (Client) is an advanced model that outperforms both traditional Transformer-based models and linear models.
Client incorporates non-linearity and cross-variable dependencies, which sets it apart from conventional linear models and Transformer-based models.
arXiv Detail & Related papers (2023-05-30T08:31:22Z) - Stecformer: Spatio-temporal Encoding Cascaded Transformer for
Multivariate Long-term Time Series Forecasting [11.021398675773055]
We propose a complete solution to address problems in terms of feature extraction and target prediction.
For extraction, we design an efficient-temporal encoding extractor including a semi-adaptive graph to acquire sufficient-temporal information.
For prediction, we propose a Cascaded De Predictor (CDP) to strengthen the correlation between different intervals.
arXiv Detail & Related papers (2023-05-25T13:00:46Z) - CARD: Channel Aligned Robust Blend Transformer for Time Series
Forecasting [50.23240107430597]
We design a special Transformer, i.e., Channel Aligned Robust Blend Transformer (CARD for short), that addresses key shortcomings of CI type Transformer in time series forecasting.
First, CARD introduces a channel-aligned attention structure that allows it to capture both temporal correlations among signals.
Second, in order to efficiently utilize the multi-scale knowledge, we design a token blend module to generate tokens with different resolutions.
Third, we introduce a robust loss function for time series forecasting to alleviate the potential overfitting issue.
arXiv Detail & Related papers (2023-05-20T05:16:31Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
Long-term time-series forecasting (LTTF) has become a pressing demand in many applications, such as wind power supply planning.
Transformer models have been adopted to deliver high prediction capacity because of the high computational self-attention mechanism.
We propose an efficient Transformerbased model, named Conformer, which differentiates itself from existing methods for LTTF in three aspects.
arXiv Detail & Related papers (2023-01-05T13:59:29Z) - W-Transformers : A Wavelet-based Transformer Framework for Univariate
Time Series Forecasting [7.075125892721573]
We build a transformer model for non-stationary time series using wavelet-based transformer encoder architecture.
We evaluate our framework on several publicly available benchmark time series datasets from various domains.
arXiv Detail & Related papers (2022-09-08T17:39:38Z) - ETSformer: Exponential Smoothing Transformers for Time-series
Forecasting [35.76867542099019]
We propose ETSFormer, a novel time-series Transformer architecture, which exploits the principle of exponential smoothing in improving Transformers for time-series forecasting.
In particular, inspired by the classical exponential smoothing methods in time-series forecasting, we propose the novel exponential smoothing attention (ESA) and frequency attention (FA) to replace the self-attention mechanism in vanilla Transformers, thus improving both accuracy and efficiency.
arXiv Detail & Related papers (2022-02-03T02:50:44Z) - Transformer Hawkes Process [79.16290557505211]
We propose a Transformer Hawkes Process (THP) model, which leverages the self-attention mechanism to capture long-term dependencies.
THP outperforms existing models in terms of both likelihood and event prediction accuracy by a notable margin.
We provide a concrete example, where THP achieves improved prediction performance for learning multiple point processes when incorporating their relational information.
arXiv Detail & Related papers (2020-02-21T13:48:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.