Neural networks for bifurcation and linear stability analysis of steady states in partial differential equations
- URL: http://arxiv.org/abs/2407.19707v3
- Date: Mon, 5 Aug 2024 11:22:34 GMT
- Title: Neural networks for bifurcation and linear stability analysis of steady states in partial differential equations
- Authors: Muhammad Luthfi Shahab, Hadi Susanto,
- Abstract summary: A neural network is proposed to construct bifurcation diagrams from parameterized nonlinear PDEs.
A neural network approach is also presented for solving eigenvalue problems to analyze solution linear stability.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This research introduces an extended application of neural networks for solving nonlinear partial differential equations (PDEs). A neural network, combined with a pseudo-arclength continuation, is proposed to construct bifurcation diagrams from parameterized nonlinear PDEs. Additionally, a neural network approach is also presented for solving eigenvalue problems to analyze solution linear stability, focusing on identifying the largest eigenvalue. The effectiveness of the proposed neural network is examined through experiments on the Bratu equation and the Burgers equation. Results from a finite difference method are also presented as comparison. Varying numbers of grid points are employed in each case to assess the behavior and accuracy of both the neural network and the finite difference method. The experimental results demonstrate that the proposed neural network produces better solutions, generates more accurate bifurcation diagrams, has reasonable computational times, and proves effective for linear stability analysis.
Related papers
- Chebyshev Spectral Neural Networks for Solving Partial Differential Equations [0.0]
The study uses a feedforward neural network model and error backpropagation principles, utilizing automatic differentiation (AD) to compute the loss function.
The numerical efficiency and accuracy of the CSNN model are investigated through testing on elliptic partial differential equations, and it is compared with the well-known Physics-Informed Neural Network(PINN) method.
arXiv Detail & Related papers (2024-06-06T05:31:45Z) - Automatic Differentiation is Essential in Training Neural Networks for Solving Differential Equations [7.890817997914349]
Neural network-based approaches have recently shown significant promise in solving partial differential equations (PDEs) in science and engineering.
One advantage of the neural network methods for PDEs lies in its automatic differentiation (AD)
In this paper, we quantitatively demonstrate the advantage of AD in training neural networks.
arXiv Detail & Related papers (2024-05-23T02:01:05Z) - Solutions to Elliptic and Parabolic Problems via Finite Difference Based Unsupervised Small Linear Convolutional Neural Networks [1.124958340749622]
We propose a fully unsupervised approach, requiring no training data, to estimate finite difference solutions for PDEs directly via small linear convolutional neural networks.
Our proposed approach uses substantially fewer parameters than similar finite difference-based approaches while also demonstrating comparable accuracy to the true solution for several selected elliptic and parabolic problems.
arXiv Detail & Related papers (2023-11-01T03:15:10Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Convergence analysis of unsupervised Legendre-Galerkin neural networks
for linear second-order elliptic PDEs [0.8594140167290099]
We perform the convergence analysis of unsupervised Legendre--Galerkin neural networks (ULGNet)
ULGNet is a deep-learning-based numerical method for solving partial differential equations (PDEs)
arXiv Detail & Related papers (2022-11-16T13:31:03Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
We propose an approach to solving partial differential equations (PDEs) using a set of neural networks.
We regress a set of neural networks onto a reduced order Proper Orthogonal Decomposition (POD) basis.
These networks are then used in combination with a branch network that ingests the parameters of the prescribed PDE to compute a reduced order approximation to the PDE.
arXiv Detail & Related papers (2022-08-02T18:27:13Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - Inverse Problem of Nonlinear Schr\"odinger Equation as Learning of
Convolutional Neural Network [5.676923179244324]
It is shown that one can obtain a relatively accurate estimate of the considered parameters using the proposed method.
It provides a natural framework in inverse problems of partial differential equations with deep learning.
arXiv Detail & Related papers (2021-07-19T02:54:37Z) - Conditional physics informed neural networks [85.48030573849712]
We introduce conditional PINNs (physics informed neural networks) for estimating the solution of classes of eigenvalue problems.
We show that a single deep neural network can learn the solution of partial differential equations for an entire class of problems.
arXiv Detail & Related papers (2021-04-06T18:29:14Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.