Octave-YOLO: Cross frequency detection network with octave convolution
- URL: http://arxiv.org/abs/2407.19746v1
- Date: Mon, 29 Jul 2024 07:18:11 GMT
- Title: Octave-YOLO: Cross frequency detection network with octave convolution
- Authors: Sangjune Shin, Dongkun Shin,
- Abstract summary: Octave-YOLO is designed to process high-resolution images in real-time within the constraints of embedded systems.
Result: In 1080x1080 resolution, Octave-YOLO-N is 1.56 times faster than YOLOv8.
- Score: 1.6114012813668932
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the rapid advancement of object detection algorithms, processing high-resolution images on embedded devices remains a significant challenge. Theoretically, the fully convolutional network architecture used in current real-time object detectors can handle all input resolutions. However, the substantial computational demands required to process high-resolution images render them impractical for real-time applications. To address this issue, real-time object detection models typically downsample the input image for inference, leading to a loss of detail and decreased accuracy. In response, we developed Octave-YOLO, designed to process high-resolution images in real-time within the constraints of embedded systems. We achieved this through the introduction of the cross frequency partial network (CFPNet), which divides the input feature map into low-resolution, low-frequency, and high-resolution, high-frequency sections. This configuration enables complex operations such as convolution bottlenecks and self-attention to be conducted exclusively on low-resolution feature maps while simultaneously preserving the details in high-resolution maps. Notably, this approach not only dramatically reduces the computational demands of convolution tasks but also allows for the integration of attention modules, which are typically challenging to implement in real-time applications, with minimal additional cost. Additionally, we have incorporated depthwise separable convolution into the core building blocks and downsampling layers to further decrease latency. Experimental results have shown that Octave-YOLO matches the performance of YOLOv8 while significantly reducing computational demands. For example, in 1080x1080 resolution, Octave-YOLO-N is 1.56 times faster than YOLOv8, achieving nearly the same accuracy on the COCO dataset with approximately 40 percent fewer parameters and FLOPs.
Related papers
- QuantVSR: Low-Bit Post-Training Quantization for Real-World Video Super-Resolution [53.13952833016505]
We propose a low-bit quantization model for real-world video super-resolution (VSR)<n>We use a calibration dataset to measure both spatial and temporal complexity for each layer.<n>We refine the FP and low-bit branches to achieve simultaneous optimization.
arXiv Detail & Related papers (2025-08-06T14:35:59Z) - Sparse Convolutional Recurrent Learning for Efficient Event-based Neuromorphic Object Detection [4.362139927929203]
We propose the Sparse Event-based Efficient Detector (SEED) for efficient event-based object detection on neuromorphic processors.<n>We introduce sparse convolutional recurrent learning, which achieves over 92% activation sparsity in recurrent processing, vastly reducing the cost for reasoning on sparse event data.
arXiv Detail & Related papers (2025-06-16T12:54:27Z) - Light-YOLOv8-Flame: A Lightweight High-Performance Flame Detection Algorithm [7.749651062075137]
This paper introduces Light-YOLOv8-Flame, a lightweight flame detection algorithm specifically designed for real-time deployment.
The proposed model enhances the YOLOv8 architecture through the substitution of the original C2f module with the FasterNet Block module.
arXiv Detail & Related papers (2025-04-11T09:42:46Z) - USEFUSE: Utile Stride for Enhanced Performance in Fused Layer Architecture of Deep Neural Networks [0.6435156676256051]
This study presents the Sum-of-Products (SOP) units for convolution, which utilize low-latency left-to-right bit-serial arithmetic.
An effective mechanism detects and skips inefficient convolutions after ReLU layers, minimizing power consumption.
Two designs cater to varied demands: one focuses on minimal response time for mission-critical applications, and another focuses on resource-constrained devices with comparable latency.
arXiv Detail & Related papers (2024-12-18T11:04:58Z) - Compressing Recurrent Neural Networks for FPGA-accelerated Implementation in Fluorescence Lifetime Imaging [3.502427552446068]
Deep learning models enable real-time inference, but can be computationally demanding due to complex architectures and large matrix operations.
This makes DL models ill-suited for direct implementation on field-programmable gate array (FPGA)-based camera hardware.
In this work, we focus on compressing recurrent neural networks (RNNs), which are well-suited for FLI time-series data processing, to enable deployment on resource-constrained FPGA boards.
arXiv Detail & Related papers (2024-10-01T17:23:26Z) - What is YOLOv9: An In-Depth Exploration of the Internal Features of the Next-Generation Object Detector [0.0]
This study focuses on the YOLOv9 object detection model, focusing on its architectural innovations, training methodologies, and performance improvements.
Key advancements, such as the Generalized Efficient Layer Aggregation Network GELAN and Programmable Gradient Information PGI, significantly enhance feature extraction and gradient flow.
This paper provides the first in depth exploration of YOLOv9s internal features and their real world applicability, establishing it as a state of the art solution for real time object detection.
arXiv Detail & Related papers (2024-09-12T07:46:58Z) - Event-Stream Super Resolution using Sigma-Delta Neural Network [0.10923877073891444]
Event cameras present unique challenges due to their low resolution and sparse, asynchronous nature of the data they collect.
Current event super-resolution algorithms are not fully optimized for the distinct data structure produced by event cameras.
Research proposes a method that integrates binary spikes with Sigma Delta Neural Networks (SDNNs)
arXiv Detail & Related papers (2024-08-13T15:25:18Z) - Sparse Refinement for Efficient High-Resolution Semantic Segmentation [40.243181997916615]
SparseRefine enhances dense low-resolution predictions with sparse high-resolution refinements.
It can be seamlessly integrated into any existing semantic segmentation model.
It achieves significant speedup: 1.5 to 3.7 times when applied to HRNet-W48, SegFormer-B5, Mask2Former-T/L and SegNeXt-L on Cityscapes.
arXiv Detail & Related papers (2024-07-26T18:00:09Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
This paper proposes a novel and fast self-supervised solution for sparse-view CBCT reconstruction.
The desired attenuation coefficients are represented as a continuous function of 3D spatial coordinates, parameterized by a fully-connected deep neural network.
A learning-based encoder entailing hash coding is adopted to help the network capture high-frequency details.
arXiv Detail & Related papers (2022-09-29T04:06:00Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
This paper explores a novel frequency-aware dynamic network for dividing the input into multiple parts according to its coefficients in the discrete cosine transform (DCT) domain.
In practice, the high-frequency part will be processed using expensive operations and the lower-frequency part is assigned with cheap operations to relieve the computation burden.
Experiments conducted on benchmark SISR models and datasets show that the frequency-aware dynamic network can be employed for various SISR neural architectures.
arXiv Detail & Related papers (2021-03-15T12:54:26Z) - FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation [81.76975488010213]
Dense optical flow estimation plays a key role in many robotic vision tasks.
Current networks often occupy large number of parameters and require heavy computation costs.
Our proposed FastFlowNet works in the well-known coarse-to-fine manner with following innovations.
arXiv Detail & Related papers (2021-03-08T03:09:37Z) - ALF: Autoencoder-based Low-rank Filter-sharing for Efficient
Convolutional Neural Networks [63.91384986073851]
We propose the autoencoder-based low-rank filter-sharing technique technique (ALF)
ALF shows a reduction of 70% in network parameters, 61% in operations and 41% in execution time, with minimal loss in accuracy.
arXiv Detail & Related papers (2020-07-27T09:01:22Z) - AQD: Towards Accurate Fully-Quantized Object Detection [94.06347866374927]
We propose an Accurate Quantized object Detection solution, termed AQD, to get rid of floating-point computation.
Our AQD achieves comparable or even better performance compared with the full-precision counterpart under extremely low-bit schemes.
arXiv Detail & Related papers (2020-07-14T09:07:29Z) - FarSee-Net: Real-Time Semantic Segmentation by Efficient Multi-scale
Context Aggregation and Feature Space Super-resolution [14.226301825772174]
We introduce a novel and efficient module called Cascaded Factorized Atrous Spatial Pyramid Pooling (CF-ASPP)
It is a lightweight cascaded structure for Convolutional Neural Networks (CNNs) to efficiently leverage context information.
We achieve 68.4% mIoU at 84 fps on the Cityscapes test set with a single Nivida Titan X (Maxwell) GPU card.
arXiv Detail & Related papers (2020-03-09T03:53:57Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
We propose a new deep learning algorithm for fast salient object detection.
The proposed algorithm achieves competitive accuracy and high inference efficiency simultaneously with a single CPU thread.
arXiv Detail & Related papers (2020-01-22T15:23:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.