Sparse Convolutional Recurrent Learning for Efficient Event-based Neuromorphic Object Detection
- URL: http://arxiv.org/abs/2506.13440v1
- Date: Mon, 16 Jun 2025 12:54:27 GMT
- Title: Sparse Convolutional Recurrent Learning for Efficient Event-based Neuromorphic Object Detection
- Authors: Shenqi Wang, Yingfu Xu, Amirreza Yousefzadeh, Sherif Eissa, Henk Corporaal, Federico Corradi, Guangzhi Tang,
- Abstract summary: We propose the Sparse Event-based Efficient Detector (SEED) for efficient event-based object detection on neuromorphic processors.<n>We introduce sparse convolutional recurrent learning, which achieves over 92% activation sparsity in recurrent processing, vastly reducing the cost for reasoning on sparse event data.
- Score: 4.362139927929203
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Leveraging the high temporal resolution and dynamic range, object detection with event cameras can enhance the performance and safety of automotive and robotics applications in real-world scenarios. However, processing sparse event data requires compute-intensive convolutional recurrent units, complicating their integration into resource-constrained edge applications. Here, we propose the Sparse Event-based Efficient Detector (SEED) for efficient event-based object detection on neuromorphic processors. We introduce sparse convolutional recurrent learning, which achieves over 92% activation sparsity in recurrent processing, vastly reducing the cost for spatiotemporal reasoning on sparse event data. We validated our method on Prophesee's 1 Mpx and Gen1 event-based object detection datasets. Notably, SEED sets a new benchmark in computational efficiency for event-based object detection which requires long-term temporal learning. Compared to state-of-the-art methods, SEED significantly reduces synaptic operations while delivering higher or same-level mAP. Our hardware simulations showcase the critical role of SEED's hardware-aware design in achieving energy-efficient and low-latency neuromorphic processing.
Related papers
- Hybrid Spiking Vision Transformer for Object Detection with Event Cameras [19.967565219584056]
Spiking Neural Networks (SNNs) have emerged as a promising approach, offering low energy consumption and rich dynamics.<n>This study proposes a novel hybrid Transformer (HsVT) model to enhance the performance of event-based object detection.<n> Experimental results demonstrate that HsVT achieves significant performance improvements in event detection with fewer parameters.
arXiv Detail & Related papers (2025-05-12T16:19:20Z) - SuperEIO: Self-Supervised Event Feature Learning for Event Inertial Odometry [6.552812892993662]
Event cameras asynchronously output low-latency event streams, promising for state estimation in high-speed motion and challenging lighting conditions.<n>We propose SuperEIO, a novel framework that leverages the learning-based event-only detection and IMU measurements to achieve eventinertial odometry.<n>We evaluate our method extensively on multiple public datasets, demonstrating its superior accuracy and robustness compared to other state-of-the-art event-based methods.
arXiv Detail & Related papers (2025-03-29T03:58:15Z) - RE-POSE: Synergizing Reinforcement Learning-Based Partitioning and Offloading for Edge Object Detection [3.2805151494259563]
Real-time object detection on edge devices presents significant challenges due to their limited computational resources and the high demands of deep neural network (DNN)-based detection models.<n>This paper introduces RE-POSE, a framework designed to optimize the accuracy-latency trade-off in resource-constrained edge environments.
arXiv Detail & Related papers (2025-01-16T10:56:45Z) - CREST: An Efficient Conjointly-trained Spike-driven Framework for Event-based Object Detection Exploiting Spatiotemporal Dynamics [7.696109414724968]
Spiking neural networks (SNNs) are promising for event-based object recognition and detection.<n>Existing SNN frameworks often fail to handle multi-scaletemporal features, leading to increased data redundancy and reduced accuracy.<n>We propose CREST, a novel conjointly-trained spike-driven framework to exploit event-based object detection.
arXiv Detail & Related papers (2024-12-17T04:33:31Z) - Deep Learning and Hybrid Approaches for Dynamic Scene Analysis, Object Detection and Motion Tracking [0.0]
This project aims to develop a robust video surveillance system, which can segment videos into smaller clips based on the detection of activities.<n>It uses CCTV footage, for example, to record only major events-like the appearance of a person or a thief-so that storage is optimized and digital searches are easier.
arXiv Detail & Related papers (2024-12-05T07:44:40Z) - Fast Window-Based Event Denoising with Spatiotemporal Correlation
Enhancement [85.66867277156089]
We propose window-based event denoising, which simultaneously deals with a stack of events.
In spatial domain, we choose maximum a posteriori (MAP) to discriminate real-world event and noise.
Our algorithm can remove event noise effectively and efficiently and improve the performance of downstream tasks.
arXiv Detail & Related papers (2024-02-14T15:56:42Z) - Dual Memory Aggregation Network for Event-Based Object Detection with
Learnable Representation [79.02808071245634]
Event-based cameras are bio-inspired sensors that capture brightness change of every pixel in an asynchronous manner.
Event streams are divided into grids in the x-y-t coordinates for both positive and negative polarity, producing a set of pillars as 3D tensor representation.
Long memory is encoded in the hidden state of adaptive convLSTMs while short memory is modeled by computing spatial-temporal correlation between event pillars.
arXiv Detail & Related papers (2023-03-17T12:12:41Z) - SALISA: Saliency-based Input Sampling for Efficient Video Object
Detection [58.22508131162269]
We propose SALISA, a novel non-uniform SALiency-based Input SAmpling technique for video object detection.
We show that SALISA significantly improves the detection of small objects.
arXiv Detail & Related papers (2022-04-05T17:59:51Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - Event-based Asynchronous Sparse Convolutional Networks [54.094244806123235]
Event cameras are bio-inspired sensors that respond to per-pixel brightness changes in the form of asynchronous and sparse "events"
We present a general framework for converting models trained on synchronous image-like event representations into asynchronous models with identical output.
We show both theoretically and experimentally that this drastically reduces the computational complexity and latency of high-capacity, synchronous neural networks.
arXiv Detail & Related papers (2020-03-20T08:39:49Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
We propose a new deep learning algorithm for fast salient object detection.
The proposed algorithm achieves competitive accuracy and high inference efficiency simultaneously with a single CPU thread.
arXiv Detail & Related papers (2020-01-22T15:23:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.