Map2Traj: Street Map Piloted Zero-shot Trajectory Generation with Diffusion Model
- URL: http://arxiv.org/abs/2407.19765v1
- Date: Mon, 29 Jul 2024 07:57:03 GMT
- Title: Map2Traj: Street Map Piloted Zero-shot Trajectory Generation with Diffusion Model
- Authors: Zhenyu Tao, Wei Xu, Xiaohu You,
- Abstract summary: We develop a novel zero-shot trajectory generation method, named Map2Traj, by exploiting the diffusion model.
With solely the street map of an unobserved area, Map2Traj generates synthetic trajectories that closely resemble the real-world mobility pattern.
- Score: 17.041443813376546
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: User mobility modeling serves a crucial role in analysis and optimization of contemporary wireless networks. Typical stochastic mobility models, e.g., random waypoint model and Gauss Markov model, can hardly capture the distribution characteristics of users within real-world areas. State-of-the-art trace-based mobility models and existing learning-based trajectory generation methods, however, are frequently constrained by the inaccessibility of substantial real trajectories due to privacy concerns. In this paper, we harness the intrinsic correlation between street maps and trajectories and develop a novel zero-shot trajectory generation method, named Map2Traj, by exploiting the diffusion model. We incorporate street maps as a condition to consistently pilot the denoising process and train our model on diverse sets of real trajectories from various regions in Xi'an, China, and their corresponding street maps. With solely the street map of an unobserved area, Map2Traj generates synthetic trajectories that not only closely resemble the real-world mobility pattern but also offer comparable efficacy. Extensive experiments validate the efficacy of our proposed method on zero-shot trajectory generation tasks in terms of both trajectory and distribution similarities. In addition, a case study of employing Map2Traj in wireless network optimization is presented to validate its efficacy for downstream applications.
Related papers
- Trajectory Representation Learning on Road Networks and Grids with Spatio-Temporal Dynamics [0.8655526882770742]
Trajectory representation learning is a fundamental task for applications in fields including smart city, and urban planning.
We propose TIGR, a novel model designed to integrate grid and road network modalities while incorporatingtemporal dynamics.
We evaluate TIGR on two realworld datasets and demonstrate the effectiveness of combining both modalities.
arXiv Detail & Related papers (2024-11-21T10:56:02Z) - Bridging Model-Based Optimization and Generative Modeling via Conservative Fine-Tuning of Diffusion Models [54.132297393662654]
We introduce a hybrid method that fine-tunes cutting-edge diffusion models by optimizing reward models through RL.
We demonstrate the capability of our approach to outperform the best designs in offline data, leveraging the extrapolation capabilities of reward models.
arXiv Detail & Related papers (2024-05-30T03:57:29Z) - Guiding Attention in End-to-End Driving Models [49.762868784033785]
Vision-based end-to-end driving models trained by imitation learning can lead to affordable solutions for autonomous driving.
We study how to guide the attention of these models to improve their driving quality by adding a loss term during training.
In contrast to previous work, our method does not require these salient semantic maps to be available during testing time.
arXiv Detail & Related papers (2024-04-30T23:18:51Z) - A Fast and Map-Free Model for Trajectory Prediction in Traffics [2.435517936694533]
This paper proposes an efficient trajectory prediction model that is not dependent on traffic maps.
By comprehensively utilizing attention mechanism, LSTM, graph convolution network and temporal transformer, our model is able to learn rich dynamic and interaction information of all agents.
Our model achieves the highest performance when comparing with existing map-free methods and also exceeds most map-based state-of-the-art methods on the Argoverse dataset.
arXiv Detail & Related papers (2023-07-19T08:36:31Z) - Continuous Trajectory Generation Based on Two-Stage GAN [50.55181727145379]
We propose a novel two-stage generative adversarial framework to generate the continuous trajectory on the road network.
Specifically, we build the generator under the human mobility hypothesis of the A* algorithm to learn the human mobility behavior.
For the discriminator, we combine the sequential reward with the mobility yaw reward to enhance the effectiveness of the generator.
arXiv Detail & Related papers (2023-01-16T09:54:02Z) - Planning with Diffusion for Flexible Behavior Synthesis [125.24438991142573]
We consider what it would look like to fold as much of the trajectory optimization pipeline as possible into the modeling problem.
The core of our technical approach lies in a diffusion probabilistic model that plans by iteratively denoising trajectories.
arXiv Detail & Related papers (2022-05-20T07:02:03Z) - DouFu: A Double Fusion Joint Learning Method For Driving Trajectory
Representation [13.321587117066166]
We propose a novel multimodal fusion model, DouFu, for trajectory representation joint learning.
We first design movement, route, and global features generated from the trajectory data and urban functional zones.
With the global semantic feature, DouFu produces a comprehensive embedding for each trajectory.
arXiv Detail & Related papers (2022-05-05T07:43:35Z) - PreTraM: Self-Supervised Pre-training via Connecting Trajectory and Map [58.53373202647576]
We propose PreTraM, a self-supervised pre-training scheme for trajectory forecasting.
It consists of two parts: 1) Trajectory-Map Contrastive Learning, where we project trajectories and maps to a shared embedding space with cross-modal contrastive learning, and 2) Map Contrastive Learning, where we enhance map representation with contrastive learning on large quantities of HD-maps.
On top of popular baselines such as AgentFormer and Trajectron++, PreTraM boosts their performance by 5.5% and 6.9% relatively in FDE-10 on the challenging nuScenes dataset.
arXiv Detail & Related papers (2022-04-21T23:01:21Z) - Haar Wavelet based Block Autoregressive Flows for Trajectories [129.37479472754083]
Prediction of trajectories such as that of pedestrians is crucial to the performance of autonomous agents.
We introduce a novel Haar wavelet based block autoregressive model leveraging split couplings.
We illustrate the advantages of our approach for generating diverse and accurate trajectories on two real-world datasets.
arXiv Detail & Related papers (2020-09-21T13:57:10Z) - TrajGAIL: Generating Urban Vehicle Trajectories using Generative
Adversarial Imitation Learning [9.01310450044549]
This research suggests a generative modeling approach to learn the underlying distributions of urban vehicle trajectory data.
A generative model for urban vehicle trajectories can better generalize from training data by learning the underlying distribution of the training data.
TrajGAIL is a generative adversarial imitation learning framework for the urban vehicle trajectory generation.
arXiv Detail & Related papers (2020-07-28T13:17:51Z) - Improving Movement Predictions of Traffic Actors in Bird's-Eye View
Models using GANs and Differentiable Trajectory Rasterization [12.652210024012374]
One of the most critical pieces of the self-driving puzzle is the task of predicting future movement of surrounding traffic actors.
Methods based on top-down sceneization on one side and Generative Adrial Networks (GANs) on the other have shown to be particularly successful.
In this paper we build upon these two directions and propose aversa-based conditional GAN architecture.
We evaluate the proposed method on a large-scale, real-world data set, showing that it outperforms state-of-the-art GAN-based baselines.
arXiv Detail & Related papers (2020-04-14T00:41:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.