Guiding Attention in End-to-End Driving Models
- URL: http://arxiv.org/abs/2405.00242v1
- Date: Tue, 30 Apr 2024 23:18:51 GMT
- Title: Guiding Attention in End-to-End Driving Models
- Authors: Diego Porres, Yi Xiao, Gabriel Villalonga, Alexandre Levy, Antonio M. López,
- Abstract summary: Vision-based end-to-end driving models trained by imitation learning can lead to affordable solutions for autonomous driving.
We study how to guide the attention of these models to improve their driving quality by adding a loss term during training.
In contrast to previous work, our method does not require these salient semantic maps to be available during testing time.
- Score: 49.762868784033785
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision-based end-to-end driving models trained by imitation learning can lead to affordable solutions for autonomous driving. However, training these well-performing models usually requires a huge amount of data, while still lacking explicit and intuitive activation maps to reveal the inner workings of these models while driving. In this paper, we study how to guide the attention of these models to improve their driving quality and obtain more intuitive activation maps by adding a loss term during training using salient semantic maps. In contrast to previous work, our method does not require these salient semantic maps to be available during testing time, as well as removing the need to modify the model's architecture to which it is applied. We perform tests using perfect and noisy salient semantic maps with encouraging results in both, the latter of which is inspired by possible errors encountered with real data. Using CIL++ as a representative state-of-the-art model and the CARLA simulator with its standard benchmarks, we conduct experiments that show the effectiveness of our method in training better autonomous driving models, especially when data and computational resources are scarce.
Related papers
- Combating Missing Modalities in Egocentric Videos at Test Time [92.38662956154256]
Real-world applications often face challenges with incomplete modalities due to privacy concerns, efficiency needs, or hardware issues.
We propose a novel approach to address this issue at test time without requiring retraining.
MiDl represents the first self-supervised, online solution for handling missing modalities exclusively at test time.
arXiv Detail & Related papers (2024-04-23T16:01:33Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
A longstanding challenge for self-driving development is simulating dynamic driving scenarios seeded from recorded driving logs.
We apply tools from discrete sequence modeling to model how vehicles, pedestrians and cyclists interact in driving scenarios.
Our model tops the Sim Agents Benchmark, surpassing prior work along the realism meta metric by 3.3% and along the interaction metric by 9.9%.
arXiv Detail & Related papers (2023-12-07T18:53:27Z) - KARNet: Kalman Filter Augmented Recurrent Neural Network for Learning
World Models in Autonomous Driving Tasks [11.489187712465325]
We present a Kalman filter augmented recurrent neural network architecture to learn the latent representation of the traffic flow using front camera images only.
Results show that incorporating an explicit model of the vehicle (states estimated using Kalman filtering) in the end-to-end learning significantly increases performance.
arXiv Detail & Related papers (2023-05-24T02:27:34Z) - An active inference model of car following: Advantages and applications [6.905724739762358]
Driver process models play a central role in the testing, verification, and development of automated and autonomous vehicle technologies.
Data-driven machine learning models are more capable than rule-based models but are limited by the need for large training datasets and their lack of interpretability.
We propose a novel car following modeling approach using active inference, which has comparable behavioral flexibility to data-driven models while maintaining interpretability.
arXiv Detail & Related papers (2023-03-27T13:39:26Z) - CARNet: A Dynamic Autoencoder for Learning Latent Dynamics in Autonomous
Driving Tasks [11.489187712465325]
An autonomous driving system should effectively use the information collected from the various sensors in order to form an abstract description of the world.
Deep learning models, such as autoencoders, can be used for that purpose, as they can learn compact latent representations from a stream of incoming data.
This work proposes CARNet, a Combined dynAmic autoencodeR NETwork architecture that utilizes an autoencoder combined with a recurrent neural network to learn the current latent representation.
arXiv Detail & Related papers (2022-05-18T04:15:42Z) - NEAT: Neural Attention Fields for End-to-End Autonomous Driving [59.60483620730437]
We present NEural ATtention fields (NEAT), a novel representation that enables efficient reasoning for imitation learning models.
NEAT is a continuous function which maps locations in Bird's Eye View (BEV) scene coordinates to waypoints and semantics.
In a new evaluation setting involving adverse environmental conditions and challenging scenarios, NEAT outperforms several strong baselines and achieves driving scores on par with the privileged CARLA expert.
arXiv Detail & Related papers (2021-09-09T17:55:28Z) - A Hybrid Rule-Based and Data-Driven Approach to Driver Modeling through
Particle Filtering [6.9485501711137525]
We propose a methodology that combines rule-based modeling with data-driven learning.
Our results show that driver models based on our hybrid rule-based and data-driven approach can accurately capture real-world driving behavior.
arXiv Detail & Related papers (2021-08-29T11:07:14Z) - Distilling Interpretable Models into Human-Readable Code [71.11328360614479]
Human-readability is an important and desirable standard for machine-learned model interpretability.
We propose to train interpretable models using conventional methods, and then distill them into concise, human-readable code.
We describe a piecewise-linear curve-fitting algorithm that produces high-quality results efficiently and reliably across a broad range of use cases.
arXiv Detail & Related papers (2021-01-21T01:46:36Z) - Action-Based Representation Learning for Autonomous Driving [8.296684637620551]
We propose to use action-based driving data for learning representations.
Our experiments show that an affordance-based driving model pre-trained with this approach can leverage a relatively small amount of weakly annotated imagery.
arXiv Detail & Related papers (2020-08-21T10:49:13Z) - Learning Accurate and Human-Like Driving using Semantic Maps and
Attention [152.48143666881418]
This paper investigates how end-to-end driving models can be improved to drive more accurately and human-like.
We exploit semantic and visual maps from HERE Technologies and augment the existing Drive360 dataset with such.
Our models are trained and evaluated on the Drive360 + HERE dataset, which features 60 hours and 3000 km of real-world driving data.
arXiv Detail & Related papers (2020-07-10T22:25:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.