論文の概要: Federated Learning based Latent Factorization of Tensors for Privacy-Preserving QoS Prediction
- arxiv url: http://arxiv.org/abs/2407.19828v1
- Date: Mon, 29 Jul 2024 09:30:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 14:25:55.204692
- Title: Federated Learning based Latent Factorization of Tensors for Privacy-Preserving QoS Prediction
- Title(参考訳): フェデレーション学習に基づくプライバシ保護QoS予測のためのテンソルの潜在因子化
- Authors: Shuai Zhong, Zengtong Tang, Di Wu,
- Abstract要約: 本稿では,テンソルの潜在因数分解(FL-LFT)に基づく連合学習を創造的に設計する。
データ指向のフェデレーション学習モデルを構築し、分離されたユーザがユーザのプライバシを保護しながら、グローバルなLFTモデルを協調的にトレーニングできるようにする。
実世界から収集されたデータセットの実験では、FL-LFTは最先端のフェデレーション学習アプローチと比較して予測精度が著しく向上していることが確認された。
- 参考スコア(独自算出の注目度): 3.3295360710329738
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In applications related to big data and service computing, dynamic connections tend to be encountered, especially the dynamic data of user-perspective quality of service (QoS) in Web services. They are transformed into high-dimensional and incomplete (HDI) tensors which include abundant temporal pattern information. Latent factorization of tensors (LFT) is an extremely efficient and typical approach for extracting such patterns from an HDI tensor. However, current LFT models require the QoS data to be maintained in a central place (e.g., a central server), which is impossible for increasingly privacy-sensitive users. To address this problem, this article creatively designs a federated learning based on latent factorization of tensors (FL-LFT). It builds a data-density -oriented federated learning model to enable isolated users to collaboratively train a global LFT model while protecting user's privacy. Extensive experiments on a QoS dataset collected from the real world verify that FL-LFT shows a remarkable increase in prediction accuracy when compared to state-of-the-art federated learning (FL) approaches.
- Abstract(参考訳): ビッグデータやサービスコンピューティングに関連するアプリケーションでは、特にWebサービスにおけるユーザ・パースペクティブ・クオリティ(QoS)の動的データなど、動的接続に遭遇する傾向があります。
それらは、豊富な時間パターン情報を含む高次元かつ不完全(HDI)テンソルに変換される。
テンソルの潜在因子化(LFT)は、HDIテンソルからそのようなパターンを抽出するための極めて効率的で典型的なアプローチである。
しかしながら、現在のLFTモデルは、QoSデータを中央の場所(例えば、中央のサーバ)に保持する必要がある。
本稿では,テンソルの潜在因数分解(FL-LFT)に基づくフェデレーション学習を創造的に設計する。
データ密度指向のフェデレーション学習モデルを構築し、分離されたユーザがユーザのプライバシーを保護しながらグローバルなLFTモデルを協調的にトレーニングできるようにする。
実世界から収集されたQoSデータセットの大規模な実験により、FL-LFTは最先端のフェデレーションラーニング(FL)アプローチと比較して、予測精度が著しく向上していることが確認された。
関連論文リスト
- SFTMix: Elevating Language Model Instruction Tuning with Mixup Recipe [30.03925858123481]
従来のNTPパラダイムを超えて,命令チューニング性能を高める新しいレシピであるSFTMixを提案する。
トレーニング力学に基づいて、異なる信頼度を持つ例は、指導訓練過程において異なる役割を演じるべきであると論じる。
このアプローチにより、SFTMixは、幅広いインストラクションフォローとヘルスケアドメイン固有のSFTタスクにおいて、NTPを大幅に上回ることができる。
論文 参考訳(メタデータ) (2024-10-07T17:52:21Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - FLIGAN: Enhancing Federated Learning with Incomplete Data using GAN [1.5749416770494706]
Federated Learning (FL)は、ネットワークデバイス上での機械学習モデルの分散トレーニングのためのプライバシ保護メカニズムを提供する。
本稿では,FLにおけるデータ不完全性問題に対処する新しいアプローチであるFLIGANを提案する。
本手法はFLのプライバシ要件に則り,プロセス内の実際のデータを共有せずに合成データをフェデレートした方法で生成する。
論文 参考訳(メタデータ) (2024-03-25T16:49:38Z) - Federated Knowledge Graph Unlearning via Diffusion Model [5.373752180709173]
フェデレート・ラーニング(FL)は、人工知能技術の開発と応用を促進する。
本稿では,フェデレートされた知識グラフにおける機械学習に適した新しいフレームワークであるFedDMを提案する。
論文 参考訳(メタデータ) (2024-03-13T14:06:51Z) - Decoupled Federated Learning on Long-Tailed and Non-IID data with
Feature Statistics [20.781607752797445]
特徴統計量(DFL-FS)を用いた2段階分離型フェデレーション学習フレームワークを提案する。
最初の段階では、サーバは、マスキングされたローカル特徴統計クラスタリングによってクライアントのクラスカバレッジ分布を推定する。
第2段階では、DFL-FSは、グローバルな特徴統計に基づくフェデレーションされた特徴再生を使用して、長い尾を持つデータ分布へのモデルの適応性を高める。
論文 参考訳(メタデータ) (2024-03-13T09:24:59Z) - Privacy-preserving design of graph neural networks with applications to
vertical federated learning [56.74455367682945]
VESPERと呼ばれるエンドツーエンドのグラフ表現学習フレームワークを提案する。
VESPERは、適切なプライバシー予算の下でスパースグラフと密度グラフの両方で高性能なGNNモデルをトレーニングすることができる。
論文 参考訳(メタデータ) (2023-10-31T15:34:59Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
フェデレーション学習(FL)は、データプライバシを保護しながら、エッジデバイス間での分散学習を可能にする。
これらの課題を克服するために、部分的なモデルプルーニングとパーソナライズを備えたFLフレームワークを検討する。
このフレームワークは、学習モデルを、データ表現を学ぶためにすべてのデバイスと共有されるモデルプルーニングと、特定のデバイスのために微調整されるパーソナライズされた部分とで、グローバルな部分に分割する。
論文 参考訳(メタデータ) (2023-09-04T21:10:45Z) - A Momentum-Incorporated Non-Negative Latent Factorization of Tensors
Model for Dynamic Network Representation [0.0]
大規模動的ネットワーク (LDN) は、多くのビッグデータ関連アプリケーションにおけるデータソースである。
テンソル(LFT)モデルの潜在因子化は、この時間パターンを効率的に抽出する。
勾配降下(SGD)解法に基づくLFTモデルは、トレーニングスキームによって制限されることが多く、尾収束が弱い。
本稿では,運動量付きSGDに基づく非線形LFTモデル(MNNL)を提案する。
論文 参考訳(メタデータ) (2023-05-04T12:30:53Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
フェデレートラーニング(Federated Learning, FL)は、プライバシ制約下での分散学習パラダイムである。
サーバ内のグローバルモデル(FedFTG)を微調整するデータフリー知識蒸留法を提案する。
私たちのFedFTGは最先端(SOTA)のFLアルゴリズムよりも優れており、FedAvg、FedProx、FedDyn、SCAFFOLDの強化のための強力なプラグインとして機能します。
論文 参考訳(メタデータ) (2022-03-17T11:18:17Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
フェデレートラーニング(FL)は、プライバシを保護しながら機械学習モデルの分散最適化を可能にする。
我々は,FedRegを提案する。FedRegは,局所的な訓練段階において,知識を忘れることなくFLを加速するアルゴリズムである。
我々の実験は、FedRegはFLの収束率を著しく改善するだけでなく、特にニューラルネットワークアーキテクチャが深い場合にも改善することを示した。
論文 参考訳(メタデータ) (2022-03-05T02:31:32Z) - UVeQFed: Universal Vector Quantization for Federated Learning [179.06583469293386]
フェデレートラーニング(FL)は、ユーザがプライベートラベル付きデータを共有することなく、そのような学習モデルをトレーニングする、新たなアプローチである。
FLでは、各ユーザが学習モデルのコピーをローカルにトレーニングする。その後、サーバは個々の更新を収集し、それらをグローバルモデルに集約する。
普遍ベクトル量子化法をFLと組み合わせることで、訓練されたモデルの圧縮が最小歪みのみを誘導する分散トレーニングシステムが得られることを示す。
論文 参考訳(メタデータ) (2020-06-05T07:10:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。