Generative Retrieval with Preference Optimization for E-commerce Search
- URL: http://arxiv.org/abs/2407.19829v2
- Date: Fri, 25 Oct 2024 07:30:45 GMT
- Title: Generative Retrieval with Preference Optimization for E-commerce Search
- Authors: Mingming Li, Huimu Wang, Zuxu Chen, Guangtao Nie, Yiming Qiu, Guoyu Tang, Lin Liu, Jingwei Zhuo,
- Abstract summary: We develop an innovative framework for E-commerce search, called generative retrieval with preference optimization.
We employ multi-span identifiers to represent raw item titles and transform the task of generating titles from queries into the task of generating multi-span identifiers from queries.
Our experiments show that this framework achieves competitive performance on a real-world dataset, and online A/B tests demonstrate the superiority and effectiveness in improving conversion gains.
- Score: 16.78829577915103
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative retrieval introduces a groundbreaking paradigm to document retrieval by directly generating the identifier of a pertinent document in response to a specific query. This paradigm has demonstrated considerable benefits and potential, particularly in representation and generalization capabilities, within the context of large language models. However, it faces significant challenges in E-commerce search scenarios, including the complexity of generating detailed item titles from brief queries, the presence of noise in item titles with weak language order, issues with long-tail queries, and the interpretability of results. To address these challenges, we have developed an innovative framework for E-commerce search, called generative retrieval with preference optimization. This framework is designed to effectively learn and align an autoregressive model with target data, subsequently generating the final item through constraint-based beam search. By employing multi-span identifiers to represent raw item titles and transforming the task of generating titles from queries into the task of generating multi-span identifiers from queries, we aim to simplify the generation process. The framework further aligns with human preferences using click data and employs a constrained search method to identify key spans for retrieving the final item, thereby enhancing result interpretability. Our extensive experiments show that this framework achieves competitive performance on a real-world dataset, and online A/B tests demonstrate the superiority and effectiveness in improving conversion gains.
Related papers
- GQE: Generalized Query Expansion for Enhanced Text-Video Retrieval [56.610806615527885]
This paper introduces a novel data-centric approach, Generalized Query Expansion (GQE), to address the inherent information imbalance between text and video.
By adaptively segmenting videos into short clips and employing zero-shot captioning, GQE enriches the training dataset with comprehensive scene descriptions.
GQE achieves state-of-the-art performance on several benchmarks, including MSR-VTT, MSVD, LSMDC, and VATEX.
arXiv Detail & Related papers (2024-08-14T01:24:09Z) - Leveraging Inter-Chunk Interactions for Enhanced Retrieval in Large Language Model-Based Question Answering [12.60063463163226]
IIER captures the internal connections between document chunks by considering three types of interactions: structural, keyword, and semantic.
It identifies multiple seed nodes based on the target question and iteratively searches for relevant chunks to gather supporting evidence.
It refines the context and reasoning chain, aiding the large language model in reasoning and answer generation.
arXiv Detail & Related papers (2024-08-06T02:39:55Z) - Improving Retrieval in Sponsored Search by Leveraging Query Context Signals [6.152499434499752]
We propose an approach to enhance query understanding by augmenting queries with rich contextual signals.
We use web search titles and snippets to ground queries in real-world information and utilize GPT-4 to generate query rewrites and explanations.
Our context-aware approach substantially outperforms context-free models.
arXiv Detail & Related papers (2024-07-19T14:28:53Z) - Query-oriented Data Augmentation for Session Search [71.84678750612754]
We propose query-oriented data augmentation to enrich search logs and empower the modeling.
We generate supplemental training pairs by altering the most important part of a search context.
We develop several strategies to alter the current query, resulting in new training data with varying degrees of difficulty.
arXiv Detail & Related papers (2024-07-04T08:08:33Z) - Improving Topic Relevance Model by Mix-structured Summarization and LLM-based Data Augmentation [16.170841777591345]
In most social search scenarios such as Dianping, modeling search relevance always faces two challenges.
We first take queryd with the query-based summary and the document summary without query as the input of topic relevance model.
Then, we utilize the language understanding and generation abilities of large language model (LLM) to rewrite and generate query from queries and documents in existing training data.
arXiv Detail & Related papers (2024-04-03T10:05:47Z) - Large Search Model: Redefining Search Stack in the Era of LLMs [63.503320030117145]
We introduce a novel conceptual framework called large search model, which redefines the conventional search stack by unifying search tasks with one large language model (LLM)
All tasks are formulated as autoregressive text generation problems, allowing for the customization of tasks through the use of natural language prompts.
This proposed framework capitalizes on the strong language understanding and reasoning capabilities of LLMs, offering the potential to enhance search result quality while simultaneously simplifying the existing cumbersome search stack.
arXiv Detail & Related papers (2023-10-23T05:52:09Z) - Enhancing Retrieval-Augmented Large Language Models with Iterative
Retrieval-Generation Synergy [164.83371924650294]
We show that strong performance can be achieved by a method we call Iter-RetGen, which synergizes retrieval and generation in an iterative manner.
A model output shows what might be needed to finish a task, and thus provides an informative context for retrieving more relevant knowledge.
Iter-RetGen processes all retrieved knowledge as a whole and largely preserves the flexibility in generation without structural constraints.
arXiv Detail & Related papers (2023-05-24T16:17:36Z) - Recommender Systems with Generative Retrieval [58.454606442670034]
We propose a novel generative retrieval approach, where the retrieval model autoregressively decodes the identifiers of the target candidates.
To that end, we create semantically meaningful of codewords to serve as a Semantic ID for each item.
We show that recommender systems trained with the proposed paradigm significantly outperform the current SOTA models on various datasets.
arXiv Detail & Related papers (2023-05-08T21:48:17Z) - GPT4Rec: A Generative Framework for Personalized Recommendation and User
Interests Interpretation [8.293646972329581]
GPT4Rec is a novel and flexible generative framework inspired by search engines.
It first generates hypothetical "search queries" given item titles in a user's history, and then retrieves items for recommendation by searching these queries.
Our framework outperforms state-of-the-art methods by $75.7%$ and $22.2%$ in Recall@K on two public datasets.
arXiv Detail & Related papers (2023-04-08T00:30:08Z) - Text Summarization with Latent Queries [60.468323530248945]
We introduce LaQSum, the first unified text summarization system that learns Latent Queries from documents for abstractive summarization with any existing query forms.
Under a deep generative framework, our system jointly optimize a latent query model and a conditional language model, allowing users to plug-and-play queries of any type at test time.
Our system robustly outperforms strong comparison systems across summarization benchmarks with different query types, document settings, and target domains.
arXiv Detail & Related papers (2021-05-31T21:14:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.